精英家教网 > 高中数学 > 题目详情
15.若关于x的方程8x2-(m-1)x+m-7=0的两根均大于1,则m的取值范围是[25,+∞).

分析 由题意,方程8x2-(m-1)x+m-7=0的两根均大于1,设f(x)=8x2-(m-1)x+m-7,根据根的分布,只需要满足$\left\{\begin{array}{l}{f(1)>0}\\{-\frac{b}{2a}>1}\\{{b}^{2}-4ac≥0}\end{array}\right.$即可求解m的取值范围.

解答 解:由题意,方程8x2-(m-1)x+m-7=0的两根均大于1,设f(x)=8x2-(m-1)x+m-7,
根据根的分布,满足$\left\{\begin{array}{l}{f(1)>0}\\{-\frac{b}{2a}>1}\\{{b}^{2}-4ac≥0}\end{array}\right.$即$\left\{\begin{array}{l}{f(1)=8-m+1+m-7>0}\\{(m-1)^{2}-4×8(m-7)≥0}\\{\frac{m-1}{16}>1}\end{array}\right.$,解得:m≥25.
所以m的取值范围是[25,+∞).
故答案为:[25,+∞).

点评 本题考点是一元二次方程根的分布与系数的关系,考查用根与系数的关系将根的特征转化为不等式组求解参数范围,本题解法是解决元二次方程根的分布与系数的关系一个基本方法,应好好体会其转化技巧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
频率分布表:
近20年六月份降雨量频率分布表
降雨量70110140160200220
频率$\frac{1}{20}$$\frac{4}{20}$$\frac{2}{20}$
假定每年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,则明年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为(  )
A.0.4B.0.3C.0.2D.0.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设A(x1,y1),B(x2,y2),D(x3,y3)是抛物线y2=4x上三点,F是抛物线的焦点且|AF|,|BF|,|DF|成等差数列.当AD的垂直平分线与x轴交于点T(3,0)时,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)是定义在区间(-∞,+∞)上以2为周期的函数,记Ik=(2k-1,2k+1](k∈Z).已知当x∈I0时,f(x)=x2,如图.
(1)求函数f(x)的解析式;
(2)求使方程f(x)=ax在Ik(k∈N*)上有两个不相等实数根的关于a的集合Mk

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简
(1)$\frac{cos(α-\frac{π}{2})}{sin(\frac{5}{2}π+α)}$•sin(α-π)•cos(2π-α);  
(2)$\frac{{\sqrt{1-2sin20°cos200°}}}{{cos160°-\sqrt{1-{{cos}^2}20°}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.半径为2的球的内接几何体的三视图如图,则其体积为(2+$\sqrt{3}$)π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和Sn=$\frac{3}{2}$an+n-3,求证:数列{an-1}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=$\frac{1}{2}$loga(a2x)•loga(ax)(2≤x≤4)的最大值是0,最小值是-$\frac{1}{8}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x为三角形中的最小角,则函数y=sin(x+$\frac{π}{3}$)+sin(x-$\frac{π}{3}$)+$\sqrt{3}$cosx+1的值域为[$\sqrt{3}$+1,3].

查看答案和解析>>

同步练习册答案