精英家教网 > 高中数学 > 题目详情
设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是______(用a1和q表示)
∵等比数列{an}的公比q≠1,
Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,
Tn(k)=
Tn
ak
(n,k∈N+,k≤n),
Tn
Tn(1)+Tn(2)+…+Tn(n)

=
a1×a2×a3×…×an
a2×a3×…×an+a1×a3×…×an+a1×a2×…×an-1

=
a1nq
n(n-1)
2
a1n-1q
n(n-1)
2
+a1n-1q
(n-2)(n+1)
2
+…+a1n-1•q
(n-2)(n-1)
2

=
a1
1+q-1+q-2+…+q1-n

=
a1•(1-q1-n)
1-q-1

∵Sn=
a1(1-qn)
1-q

SnTn
Tn(1)+Tn(2)+…+Tn(n)
=
a12(1+q-qn-q1-n)
2-q-q-1

数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和
S=
a12
2-q-q-1
[(1+q-q-1)+(1+q-q2-q-1)+(1+q-q3-q-2)+…+(1+q-qn-q1-n)]
=
a12
2-q-q-1
[n+nq-
q(1-qn)
1-q
-
q-1(1-q1-n)
1-q-1
]
=
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
).
故答案为:
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若8a2+a5=0,则下列式子中数值不能确定的是(  )
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

12、设等比数列{an}的前n项和为Sn,巳知S10=∫03(1+2x)dx,S20=18,则S30=
21

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若S6:S3=3,则S9:S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若
S6
S3
=3,则
S9
S6
=(  )
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n 项和为Sn,若
S6
S3
=3,则
S9
S3
=
7
7

查看答案和解析>>

同步练习册答案