精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

1)判断函数的奇偶性;

2)求证:函数为单调增函数;

3)求满足的取值范围.

【答案】(1)为奇函数;(2)证明见解析;(3).

【解析】试题分析:Ⅰ)求出定义域为{x|x≠0xR},关于原点对称,再计算f(-x),与f(x)比较即可得到奇偶性;
Ⅱ)运用单调性的定义,注意作差、变形、定符号、下结论等步骤;
Ⅲ)讨论x>0,x<0,求出f(x)的零点,再由单调性即可解得所求取值范围.

试题解析:

(1)定义域为{x|x≠0xR},关于原点对称,

,所以为奇函数;

(2)任取

所以为单调增函数;

(3)解得,所以零点为

时,由(2)可得的取值范围为 的取值范围为,又该函数为奇函数,所以当时,由(2)可得的取值范围为

综上:所以 解集为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知ABBCAB=BC=aa[13]A是以A为圆心、半径为2的圆B是以B为圆心、半径为1的圆设点EF分别为圆AB上的动点, (且同向),设BAE=θ(θ[0π])

(I)a= ,且θ= 时,求的值

()a,θ表示出,并给出一组a,θ的值,使得最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,只需将函数y=sin2x的图象上所有的点( )
A.向左平移 个单位
B.向左平移 个单位
C.向右平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下面材料:

根据两角和与差的正弦公式,有

------

------

+------

代入

)类比上述推证方法,根据两角和与差的余弦公式,证明:

;

)若的三个内角满足,试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,焦点到准线的距离为4,过点 的直线交抛物线于 两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)如果点 恰是线段 的中点,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(Ⅰ)求曲线 在点 处的切线方程;
(Ⅱ)若 恒成立,求实数 的取值范围;
(Ⅲ)求整数 的值,使函数 在区间 上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某中草药材的销售量与年份有关,下表是近五年的部分统计数据:

年份

2008

2010

2012

2014

2016

销售量(吨)

114

115

116

116

114

(1)利用所给数据求年销售量与年份之间的回归直线方程

(2)利用(1)中所求出的直线方程预测该地2018年的中草药的销售量.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知三点A(-1,0)、B(t,2)、C(2,1),t∈RO为坐标原点

(I)若△ABC是∠B为直角的直角三角形,求t的值

(Ⅱ)若四边形ABCD是平行四边形的最小值

查看答案和解析>>

同步练习册答案