【题目】已知函数 .
(1)判断函数的奇偶性;
(2)求证:函数在为单调增函数;
(3)求满足的的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知AB⊥BC,AB=BC=a,a∈[1,3],圆A是以A为圆心、半径为2的圆,圆B是以B为圆心、半径为1的圆,设点E、F分别为圆A、圆B上的动点, ∥(且与同向),设∠BAE=θ(θ∈[0,π]).
(I)当a= ,且θ= 时,求的值;
(Ⅱ)用a,θ表示出,并给出一组a,θ的值,使得最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=sin(2x﹣ )的图象,只需将函数y=sin2x的图象上所有的点( )
A.向左平移 个单位
B.向左平移 个单位
C.向右平移 个单位
D.向右平移 个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读下面材料:
根据两角和与差的正弦公式,有
------①
------②
由①+② 得------③
令有
代入③得.
(Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:
;
(Ⅱ)若的三个内角满足,试判断的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某中草药材的销售量与年份有关,下表是近五年的部分统计数据:
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
销售量(吨) | 114 | 115 | 116 | 116 | 114 |
(1)利用所给数据求年销售量与年份之间的回归直线方程;
(2)利用(1)中所求出的直线方程预测该地2018年的中草药的销售量.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知三点A(-1,0)、B(t,2)、C(2,1),t∈R,O为坐标原点
(I)若△ABC是∠B为直角的直角三角形,求t的值
(Ⅱ)若四边形ABCD是平行四边形,求的最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com