精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线C: =1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使 =0,则双曲线离心率的取值范围是

【答案】e>
【解析】解:设焦点为F(c,0),直线AB:y=k(x﹣c),
设A(x1 , y1),B(x2 , y2),
则联立直线方程和双曲线的方程,可得
(b2﹣a2k2)x2+2ca2k2x﹣a2k2c2﹣a2b2=0,
则△=4c2a4k4+4(b2﹣a2k2)(a2k2c2+a2b2)>0,
x1+x2= ,x1x2=
则y1y2=k2(x1x2+c2﹣c(x1+x2))=k2
由于OA⊥OB,则有x1x2+y1y2=0,
即有a2b2+a2k2c2+k2(a2b2﹣b2c2)=0,
即有k2=
代入判别式可得, (a2b2c2﹣a4b2)+a2b4>0,
化简可得,a2c2﹣a4+b2c2﹣a4>0,
即有c4>2a4 , 即有e>
∵b>a,∴e>
综上所述e>
所以答案是e>
【考点精析】本题主要考查了双曲线的概念的相关知识点,需要掌握平面内与两个定点的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C: + =1,直线l: (t为参数)
(1)写出曲线C的参数方程,直线l的普通方程.
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)的函数f(x),其导函数为f′(x),满足:f(x)>0且 总成立,则下列不等式成立的是(
A.e2e+3f(e)<eπ3f(π)
B.e2e+3f(π)>eπ3f(e)
C.e2e+3f(π)<eπ3f(e)
D.e2e+3f(e)>eπ3f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,以x轴的正半轴为极轴建立极坐标系.设曲线C的参数方程为 (α是参数),直线l的极坐标方程为ρcos(θ+ )=2
(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数满足,定义域为的函数是奇函数.

(1)求函数的解析式;

(2)若函数上有零点,求的取值范围;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为对角线B1D上的一点,M,N为对角线AC上的两个动点,且线段MN的长度为1.
⑴当N为对角线AC的中点且DE= 时,则三棱锥E﹣DMN的体积是
⑵当三棱锥E﹣DMN的体积为 时,则DE=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2cosx在 的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)若C1与C2相交于A、B两点,设点F(1,0),求 的值.

查看答案和解析>>

同步练习册答案