精英家教网 > 高中数学 > 题目详情
8.已知n∈N*,在(x+2)n的展开式中,第二项系数是第三项系数的$\frac{1}{5}$,
(Ⅰ)展开式中二项式系数最大项;
(Ⅱ)若$(x+2)^{n}={a}_{0}+{a}_{1}(x+1)+{a}_{2}(x+1)^{2}+…+$${a}_{n}(x+1)^{n}$,求:
①a1+a2+…+an的值;
②a1+2a2+…+nan的值.

分析 (Ⅰ)由条件求得n=6,再利用二项式系数的性质、二项展开式的通项公式,求得展开式中二项式系数最大项.
(Ⅱ)在所给的等式中,①令x=-1,可得a0=1,再令x=0,可得要求的式子的值;②对于(x+2)6=a0+a1(x+1)+a2(x+1)2+…+${a}_{n}(x+1)^{n}$,两边同时对x求导数,再令x=0,可得要求的式子的值.

解答 解:(Ⅰ)∵已知n∈N*,在(x+2)n的展开式中,第二项系数是第三项系数的$\frac{1}{5}$,
∴2${C}_{n}^{1}$=$\frac{1}{5}$•22•${C}_{n}^{2}$,求得n=6,
故展开式中二项式系数最大项为第四项,T4=${C}_{6}^{3}$•x3•23=160x3
(Ⅱ)①若$(x+2)^{n}={a}_{0}+{a}_{1}(x+1)+{a}_{2}(x+1)^{2}+…+$${a}_{n}(x+1)^{n}$=[(x+1)+1]6
令x=-1,可得a0=1,
再令x=0,可得a0+a1+a2+…+an=64,∴a1+a2+…+an=63.
②对于(x+2)6=a0+a1(x+1)+a2(x+1)2+…+${a}_{n}(x+1)^{n}$,两边同时对x求导数,
可得6(x+2)5=a1+2a2(x+1)+…+6a6(x+1)5
再令x=0,可得a1+2a2+…+nan =a1+2a2+…+6a 6=192.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若G为△ABC的重心,则(  )
A.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AG}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ(0≤θ<2π),点M(1,$\frac{π}{2}$),以极点O为原点,以极轴为x轴的正半轴建立平面直角坐标系.已知直线l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)与曲线C交于A,B两点,且|MA|>|MB|.
(1)若P(ρ,θ)为曲线C上任意一点,求ρ的最大值,并求此时点P的极坐标;
(2)求$\frac{|MA|}{|MB|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.小张同学计划在期末考试结束后,和其他小伙伴一块儿外出旅游,增长见识,旅行社为他们提供了省内的都江堰、峨眉山、九寨沟和省外的丽江古都,黄果树瀑布和凤凰古城这六个景点,由于时间和距离等原因,只能从中任取4个景点进行参观,其中黄果树瀑布不能第一个参观,且最后参观的是省内景点,则不同的旅游顺序有(  )
A.54种B.72种C.120种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱锥P-ABC中,AB⊥BC,PA=PB,E为AC的中点
(1)求证:PE⊥AB
(2)设平面PAB⊥平面ABC,PB=BC=2,AC=4,求二面角B-PA-C的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线x+y-1=0和直线x-2y-4=0的交点为P.
(1)求过点P且与直线x-2y+1=0垂直的直线方程;
(2)若点Q在圆(x+1)2+y2=4上运动,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.cos3tan4的值(  )
A.小于0B.大于0C.等于0D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-$\frac{1}{2}$ax2+bx+1的图象在x=1处的切线l过点($\frac{1}{2}$,$\frac{1}{2}$).
(1)若函数g(x)=f(x)-(a-1)x(a>0),求g(x)最大值(用a表示);
(2)若a=-4,f(x1)+f(x2)+x1+x2+3x1x2=2,证明:x1+x2≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图(Ⅰ)是反映某条公共汽车线路收支差额y与乘客量x之间关系的图象,由于目前该条公交线路亏损,公司有关人员提出两种调整建议,如图(Ⅱ)(Ⅲ)所示(注:收支差额=营业所得的票价收入-付出的成本)
给出以下说法:①图(Ⅱ)的建议是:提高成本,并提高票价;
②图(Ⅱ)的建议是:降低成本,并保持票价不变;
③图(Ⅲ)的建议是:提高票价,并降低成本;
④图(Ⅲ)的建议是:提高票价,并保持成本不变.
其中说法正确的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案