精英家教网 > 高中数学 > 题目详情
14.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ(0≤θ<2π),点M(1,$\frac{π}{2}$),以极点O为原点,以极轴为x轴的正半轴建立平面直角坐标系.已知直线l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)与曲线C交于A,B两点,且|MA|>|MB|.
(1)若P(ρ,θ)为曲线C上任意一点,求ρ的最大值,并求此时点P的极坐标;
(2)求$\frac{|MA|}{|MB|}$.

分析 (1)曲线C的极坐标方程为ρ=2cosθ+2sinθ=2$\sqrt{2}$$sin(θ+\frac{π}{4})$(0≤θ<2π),当θ=$\frac{π}{4}$时,ρ取得最大值,可得P.
(2)由ρ=2cosθ+2sinθ可得:ρ2=2ρcosθ+2ρsinθ,利用互化公式可得直角坐标方程.点M(1,$\frac{π}{2}$)化为(0,1),直线l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入圆的方程可得:t2-$\sqrt{2}$t-1=0,解得t=$\frac{\sqrt{2}+\sqrt{6}}{2}$.由t的几何意义可得:|MA|,|MB|.

解答 解:(1)曲线C的极坐标方程为ρ=2cosθ+2sinθ=2$\sqrt{2}$$sin(θ+\frac{π}{4})$(0≤θ<2π),
当θ=$\frac{π}{4}$时,ρ取得最大值2$\sqrt{2}$,此时P$(2\sqrt{2},\frac{π}{4})$.
(2)由ρ=2cosθ+2sinθ可得:ρ2=2ρcosθ+2ρsinθ,可得直角坐标方程:x2+y2-2x-2y=0.
配方为:(x-1)2+(y-1)2=2.
点M(1,$\frac{π}{2}$)化为(0,1),
直线l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入圆的方程可得:t2-$\sqrt{2}$t-1=0,解得t=$\frac{\sqrt{2}+\sqrt{6}}{2}$.
∵|MA|>|MB|.由t的几何意义可得:|MA|=$\frac{\sqrt{2}+\sqrt{6}}{2}$,|MB|=$\frac{\sqrt{6}-\sqrt{2}}{2}$.
∴$\frac{|MA|}{|MB|}$=$\frac{\frac{\sqrt{6}+\sqrt{2}}{2}}{\frac{\sqrt{6}-\sqrt{2}}{2}}$=2+$\sqrt{3}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知长方体的长、宽、高分别为3,2,$\sqrt{3}$,则该长方体外接球的体积为(  )
A.B.16πC.$\frac{16}{3}$πD.$\frac{32}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某共享单车公司欲在某社区投放一批共享单车,单车总数不超过100辆,现有A,B两种型号的单车:其中A型为运动型,成本为500元/车,骑行半小时需花费0.5元;B型车为轻便型,成本为3000元/车,骑行半小时需花费1元.若公司投入成本资金不能超过10万元,且投入的车辆平均每车每天会被骑行2次,每次不超过半小时(不足半小时按半小时计算),则在该社区单车公司可获得的总收入最多为120元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,c=$\sqrt{7}$.
(1)若a+b=5,求△ABC的面积;
(2)求a+b的最大值,并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n个面是矩形,体积为V,则(  )
A.n=4,V=10B.n=5,V=12C.n=4,V=12D.n=5,V=10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$),x∈R的单调递减区间为[$kπ+\frac{5π}{12}$,$kπ+\frac{11π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知矩阵M=$[\begin{array}{l}{2}&{3}\\{t}&{1}\end{array}]$的一个特征值为4,若点P(-1,2)在矩阵M对应的变换作用下得到点P′,求点P′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知n∈N*,在(x+2)n的展开式中,第二项系数是第三项系数的$\frac{1}{5}$,
(Ⅰ)展开式中二项式系数最大项;
(Ⅱ)若$(x+2)^{n}={a}_{0}+{a}_{1}(x+1)+{a}_{2}(x+1)^{2}+…+$${a}_{n}(x+1)^{n}$,求:
①a1+a2+…+an的值;
②a1+2a2+…+nan的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC中,内角A,B,C所对的变分别是a,b,c.
(Ⅰ)求证:acosB+bcosA=c;
(Ⅱ)已知(2c-b)cosA=acosB,且b=1,c=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案