精英家教网 > 高中数学 > 题目详情
9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n个面是矩形,体积为V,则(  )
A.n=4,V=10B.n=5,V=12C.n=4,V=12D.n=5,V=10

分析 由三视图还原原几何体,可知该几何体为直五棱柱,然后由棱柱体积公式求解.

解答 解:由三视图可知,该几何体为直五棱柱,
如图:
故n=5,且V=$2×({2}^{2}+\frac{1}{2}×2×1)=10$.
故选:D.

点评 本题考查由三视图求几何体的体积,关键是由三视图还原原几何体,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“我获奖了”,丁说:“是乙获奖”.若四位歌手的话只有一句是错的,则获奖的歌手是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)的导数f′(x)存在导数,记f′(x)的导数为fn(x).如果f(x)对任意x∈(a,b),都有fn(x)<0成立,则f(x)有如下性质:
f($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$)≥$\frac{f({x}_{1})+f({x}_{2})+…+f({x}_{n})}{n}$.其中n∈N*,x1,x2,…,xn∈(a,b).若f(x)=sinx,则fn(x)=-sinx;根据上述性质推断:当x1+x2+x3=π且x1,x2,x3∈(0,π)时,根据上述性质推断:sinx1+sinx2+sinx3的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ),其中A>0,ω>0,0<φ<π,且函数f(x)的最小正周期为$\frac{π}{2}$.
(1)若函数f(x)在x=$\frac{π}{3}$处取到最小值-2,求函数f(x)的解析式;
(2)若将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移$\frac{π}{6}$个单位,得到的函数图象关于y轴对称,求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={0,1,2},B={x|x2≤4,x∈N},则A∩B=(  )
A.{x|0≤x≤2}B.{x|-2≤x≤2}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在极坐标系中,曲线C的极坐标方程为ρ=2cosθ+2sinθ(0≤θ<2π),点M(1,$\frac{π}{2}$),以极点O为原点,以极轴为x轴的正半轴建立平面直角坐标系.已知直线l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)与曲线C交于A,B两点,且|MA|>|MB|.
(1)若P(ρ,θ)为曲线C上任意一点,求ρ的最大值,并求此时点P的极坐标;
(2)求$\frac{|MA|}{|MB|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=sin2x+$\sqrt{3}$sinxcosx+1图象的一条对称轴方程为(  )
A.x=$\frac{π}{2}$B.x=$\frac{π}{3}$C.x=$\frac{π}{4}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱锥P-ABC中,AB⊥BC,PA=PB,E为AC的中点
(1)求证:PE⊥AB
(2)设平面PAB⊥平面ABC,PB=BC=2,AC=4,求二面角B-PA-C的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b分别为8,18,则输出的a等于(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案