15£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µãP£¨1£¬$\frac{1}{2}$£©×÷Ô²x2+y2=1µÄÇÐÏߣ¬Çеã·Ö±ðΪA¡¢B£¬Ö±ÏßABÇ¡ºÃ¾­¹ýÍÖÔ²µÄÓÒ½¹µãºÍÉ϶¥µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãQ£¨-5£¬0£©×÷Ò»Ö±Ïßl½»ÍÖÔ²CÓÚM¡¢NÁ½µã£¬¼Ç$\overrightarrow{MQ}$=¦Ë$\overrightarrow{QN}$£¬Ïß¶ÎMNÉϵĵãRÂú×ã$\overrightarrow{MR}$=-¦Ë$\overrightarrow{RN}$£¬ÇóµãRµÄ¹ì¼£·½³Ì£®

·ÖÎö £¨1£©ÀûÓÃÔ²µÄ·½³ÌÏà¼õ¼´¿ÉµÃ³öÁ½Ô²ÏཻµÄ½»µãËùÔÚµÄÖ±Ïߵķ½³Ì£¬½ø¶øµÃ³öÍÖÔ²µÄ½¹µã¡¢¶¥µã£¬ÔÙÀûÓÃÍÖÔ²µÄÐÔÖʼ´¿ÉµÃ³ö·½³Ì£»
£¨2£©ÓÉÌâÒâÖª£¬Éè·½³ÌΪx=ty-5£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬R£¨x0£¬y0£©£®°ÑÖ±ÏßlµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹ØÏµ£¬ÔÙÀûÓÃÏòÁ¿$\overrightarrow{MQ}$=¦Ë$\overrightarrow{QN}$£¬¼´¿ÉµÃ³ö×ø±êÖ®¼äµÄ¹ØÏµ£¬$\overrightarrow{MR}$=-¦Ë$\overrightarrow{RN}$£¬ÏûÈ¥¦Ë¼°k¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÉèµãP£¨1£¬$\frac{1}{2}$£©£¬O£¨0£¬0£©£®ÔòÒÔÏß¶ÎOPΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£º£¨x-$\frac{1}{2}$£©2+£¨y-$\frac{1}{4}$£©2=$\frac{5}{16}$
Óë·½³Ìx2+y2=1Ïà¼õµÃx+$\frac{1}{2}$y=1£®
Áîx=0£¬µÃy=2£»Áîy=0£¬µÃx=1£®
¡à½¹µãΪ£¨1£¬0£©£¬É϶¥µãΪ£¨0£¬2£©£®
¡àc=1£¬b=2£®a2=b2+c2=5£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$£®
£¨2£©Éè·½³ÌΪx=ty-5£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬R£¨x0£¬y0£©£®
´úÈëÍÖÔ²·½³ÌµÃ£¨5+4t2£©y2-40ty+80=0£®
ÓÉÌâÒâ¡÷=£¨-40t£©2-320£¨5+4t2£©£¾0£¬¼´t2£¾5£¬
¡ày1+y2=$\frac{40t}{5+4{t}^{2}}$£¬y1y2=$\frac{80}{5+4{t}^{2}}$¢Ù
ÓÉ$\overrightarrow{MQ}$=¦Ë$\overrightarrow{QN}$£¬µÃ$\left\{\begin{array}{l}{{x}_{1}=-¦Ë{x}_{2}-5£¨1+¦Ë£©}\\{{y}_{1}=-¦Ë{y}_{2}}\end{array}\right.$£¬
´úÈë¢ÙÕûÀí¿ÉµÃ$\frac{£¨1-¦Ë£©^{2}}{¦Ë}$=-$\frac{20{t}^{2}}{5+4{t}^{2}}$ÇÒx2=$\frac{40{t}^{2}}{£¨1-¦Ë£©£¨5+4{t}^{2}£©}-5$¢Ú
ÓÉ$\overrightarrow{MR}$=-¦Ë$\overrightarrow{RN}$£¬µÃx0=$\frac{-2¦Ë{x}_{2}-5-5¦Ë}{1-¦Ë}$£¬y0=$\frac{-2¦Ë}{1-¦Ë}{y}_{2}$
ÓÉ¢Ù¢ÚµÃx0=-1£¬y0=$\frac{4}{t}$¡Ê£¨-$\frac{4\sqrt{5}}{5}$£¬$\frac{4\sqrt{5}}{5}$£©£¬
¡àRµÄ¹ì¼£·½³ÌΪx=-1£¨-$\frac{4\sqrt{5}}{5}$£¼y£¼$\frac{4\sqrt{5}}{5}$£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏòÁ¿µÄÔËËãÐÔÖʵȻù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ£¬¿¼²éÁËÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÎªÁ˲ⶨ¶Ô°¶A¡¢BÁ½µãÖ®¼äµÄ¾àÀ룬ÔÚºÓµÄÒ»°¶¶¨Ò»Ìõ»ùÏßCD£¬²âµÃCD=100Ã×£¬¡ÏACD=80¡ã£¬¡ÏBCD=45¡ã£¬¡ÏBDC=70¡ã£¬¡ÏADC=33¡ã£¬ÇóA¡¢B¼äµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãFÓëË«ÇúÏßx2-$\frac{{y}^{2}}{3}$=1µÄÓÒ¶¥µãÖØºÏ£¬Å×ÎïÏßÓëÖ±Ïßl£ºy=k£¨x-2£©£¨k¡Ù0£©½»ÓÚA¡¢BÁ½µã£¬AF¡¢BFµÄÑÓ³¤ÏßÓëÅ×ÎïÏß½»ÓÚC¡¢DÁ½µã£®
£¨1£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨2£©ÇóÖ¤£ºÖ±ÏßCDºã¹ýÒ»¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô¡÷ABCÖУ¬ÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ÈôA=$\frac{2¦Ð}{3}$£¬b=1£¬ÇÒ¡÷ABCµÄÃæ»ýΪ$\sqrt{3}$£¬Ôò$\frac{a+b}{sinA+sinB}$µÄֵΪ2$\sqrt{7}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èô¶þÏîʽ£¨$\frac{a}{x}-x\sqrt{x}$£©n£¨n¡ÊN*£©Õ¹¿ªÊ½Öк¬ÓÐx2ÏÇÒa=${¡Ò}_{-1}^{2}$|x|dx£¬Ôòµ±nÈ¡×îСֵʱ£¬Õ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍΪ$\frac{27}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}2x-1£¨x£¾0£©\\ 1-2x£¨x¡Ü0£©\end{array}\right.$£¬Ôòf£¨1£©+f£¨-1£©µÄÖµÊÇ£¨¡¡¡¡£©
A£®0B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¼¯ºÏA={-2£¬-1£¬1£¬2}£¬B={x|x2+x-2£¾0}£¬ÔòA¡É£¨∁UB£©=£¨¡¡¡¡£©
A£®{-2£¬-1£¬1}B£®{-1£¬1£¬2}C£®{-1}D£®{1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®º¯Êýf£¨x£©=$\frac{1}{2}$|sin2x|µÄÖÜÆÚÊÇ$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®É輯ºÏA={x|x2-3x-4£¼0}£¬B={x|x£¾1}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨1£¬4£©B£®£¨-1£¬1£©C£®£¨1£¬+¡Þ£©D£®£¨-1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸