精英家教网 > 高中数学 > 题目详情
19.在△ABC中,A=$\frac{π}{3}$,BC=3,D是BC的一个三等分点,则AD的最大值是1+$\sqrt{3}$.

分析 根据正弦定理得到三角形的外接圆的半径,即可求出AD的最大值.

解答 解:如图建立坐标系,
∴△ABC的外接圆满足2R=$\frac{3}{sin60°}$,
∴R=$\sqrt{3}$,
∵若AD取最大值,
∴A,M,D在同一直线上,
设M点坐标为(x,y),
∵MB=MC,
∴(x+$\frac{3}{2}$)2+y2=y2+(x-$\frac{3}{2}$)2=3,
解得x=0,y=$\frac{\sqrt{3}}{2}$
∴△ABC的外接圆的圆心M(0,$\frac{\sqrt{3}}{2}$),
∵D(-$\frac{1}{2}$,0)
∴|AD|max=|MD|+R=$\sqrt{(\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}$+$\sqrt{3}$=1+$\sqrt{3}$,
故答案为:1+$\sqrt{3}$

点评 本题考查了正弦定理和圆的方程的应用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={3,2,-1,-2},m∈A,n∈A方程mx2+ny2=1表示的图形记为“W”,则W表示双曲线的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$\overrightarrow{CB}+\overrightarrow{AD}-\overrightarrow{AB}$=$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A,B分别为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左,右顶点,点P(0,-2),直线BP交E于点Q,$\overrightarrow{PQ}=\frac{3}{2}\overrightarrow{QB}$且△ABP是等腰直角三角形.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x3+sinx+m-3是定义在[n,n+6]上的奇函数,则m+n=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等腰△ABC的角A=$\frac{π}{3}$,|BC|=2,以A为圆心,$\sqrt{3}$为半径作圆,MN为该圆的一条直径,则$\overrightarrow{BM}•\overrightarrow{CN}$的最大值为2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\left\{\begin{array}{l}m{log_{2017}}x+3sinx,x>0\\{log_{2017}}(-x)+nsinx,x<0\end{array}\right.$为偶函数,则m-n=(  )
A.4B.2C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设数列{an}为等差数列,Sn为其前n项和,若S1≤13,S4≥10,S5≤15,则a4的最大值为(  )
A.3B.4C.-7D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“?n∈N,f(n)∉N且f(n)≤n”的否定形式是(  )
A.?n∈N,f(n)∈N且f(n)>nB.?n0∈N,f(n0)∈N且f(n0)>n0
C.?n∈N,f(n)∈N或f(n)>nD.?n0∈N,f(n0)∈N或f(n0)>n0

查看答案和解析>>

同步练习册答案