精英家教网 > 高中数学 > 题目详情
8.设数列{an}为等差数列,Sn为其前n项和,若S1≤13,S4≥10,S5≤15,则a4的最大值为(  )
A.3B.4C.-7D.-5

分析 利用等差数列的通项公式与求和公式与不等式的性质即可得出.

解答 解:∵S4≥10,S5≤15,
∴a1+a2+a3+a4≥10,a1+a2+a3+a4+a5≤15,
∴a5≤5,a3≤3,
即:a1+4d≤5,a1+2d≤3,
两式相加得:2(a1+3d)≤8,
∴a4≤4,
故选:B.

点评 本题考查了等差数列的通项公式与求和公式与不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,设点A,F1,F2分别为椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左顶点和左,右焦点,过点A作斜率为k的直线交椭圆于另一点B,连接BF2并延长交椭圆于点C.
(1)求点B的坐标(用k表示);
(2)若F1C⊥AB,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,A=$\frac{π}{3}$,BC=3,D是BC的一个三等分点,则AD的最大值是1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱柱ABC-A1B1C1中,四边形AA1BB1是菱形,∠BB1A1=$\frac{π}{3},{C_1}{B_1}⊥面A{A_1}B{B_1}$,二面角C-A1B1-B为$\frac{π}{6}$,CB=1.
(Ⅰ)求证:平面ACB1⊥平面CBA1
(Ⅱ)求二面角A-A1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足不等式组$\left\{\begin{array}{l}y-x≤2\\ x+y≥4\\ 3x-y≤5\end{array}\right.$,若目标函数z=y-mx取得最大值时有唯一的最优解(1,3),则实数m的取值范围是m>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线ax+by+1=0(a>0,b>0)把圆(x+4)2+(y+1)2=16分成面积相等的两部分,则$\frac{1}{2a}+\frac{2}{b}$的最小值为(  )
A.10B.8C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的公差d≠0,a1=2d,若ak是a1与a2k+7的等比中项,则k=(  )
A.2B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数$\frac{2}{i(3-i)}$=(  )
A.$\frac{1-3i}{5}$B.$\frac{1+3i}{5}$C.$\frac{3+i}{5}$D.$\frac{3-i}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知2sinx=1+cosx,则$cot\frac{x}{2}$=(  )
A.2B.2或$\frac{1}{2}$C.2或0D.$\frac{1}{2}$或0

查看答案和解析>>

同步练习册答案