分析 作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=mx+z斜率的变化,从而求出m的取值范围.
解答 解:作出不等式组对应的平面区域如图,![]()
由z=y-mx,得y=mx+z,即直线的截距最大,z也最大,
若m=0,此时y=z,不满足条件;
若m>0,目标函数y=mx+z的斜率k=m>0,要使目标函数z=y-mx取得最大值时有唯一的最优解(1,3),
则直线y=mx+z的斜率m>1
若m<0,目标函数y=mx+z的斜率k=m<0,不满足题意.
综上,m>1.
故答案为:m>1.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对m进行分类讨论,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | -2 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com