7£®ÒÑÖªµãA£¬B·Ö±ðΪÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó£¬ÓÒ¶¥µã£¬µãP£¨0£¬-2£©£¬Ö±ÏßBP½»EÓÚµãQ£¬$\overrightarrow{PQ}=\frac{3}{2}\overrightarrow{QB}$ÇÒ¡÷ABPÊǵÈÑüÖ±½ÇÈý½ÇÐΣ®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©Éè¹ýµãPµÄ¶¯Ö±ÏßlÓëEÏཻÓÚM£¬NÁ½µã£¬µ±×ø±êÔ­µãOλÓÚÒÔMNΪֱ¾¶µÄÔ²Íâʱ£¬ÇóÖ±ÏßlбÂʵÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºÓÉ$\overrightarrow{PQ}=\frac{3}{2}\overrightarrow{QB}$£¬ÇóµÃQµã×ø±ê£¬¼´¿ÉÇóµÃÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßy=kx-2£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬ÓÉ¡÷£¾0£¬ÓÉ×ø±êÔ­µãOλÓÚÒÔMNΪֱ¾¶µÄÔ²Í⣬Ôò$\overrightarrow{OM}•\overrightarrow{ON}£¾0$£¬ÓÉÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê¹«Ê½£¬¼´¿ÉÇóµÃÖ±ÏßlбÂʵÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª£º¡÷ABPÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬a=2£¬B£¨2£¬0£©£¬
ÉèQ£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{PQ}=\frac{3}{2}\overrightarrow{QB}$£¬Ôò${x_0}=\frac{6}{5}£¬{y_0}=-\frac{4}{5}$£¬
´úÈëÍÖÔ²·½³Ì£¬½âµÃb2=1£¬
¡àÍÖÔ²·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®¡­£¨5·Ö£©
£¨¢ò£©ÓÉÌâÒâ¿ÉÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚ£¬·½³ÌΪy=kx-2£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò$\left\{\begin{array}{l}y=kx-2\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+4k2£©x2-16kx+12=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=$\frac{16k}{{1+4{k^2}}}$£¬x1x2=$\frac{12}{{1+4{k^2}}}$£¬¡­£¨8·Ö£©
ÓÉÖ±ÏßlÓëEÓÐÁ½¸ö²»Í¬µÄ½»µã£¬Ôò¡÷£¾0£¬
¼´£¨-16k£©2-4¡Á12¡Á£¨1+4k2£©£¾0£¬½âµÃ£ºk2£¾$\frac{3}{4}$£¬¡­¢Ù¡­£¨9·Ö£©
ÓÉ×ø±êÔ­µãOλÓÚÒÔMNΪֱ¾¶µÄÔ²Í⣬Ôò$\overrightarrow{OM}•\overrightarrow{ON}£¾0$£¬¼´x1x2+y1y2£¾0£¬
Ôòx1x2+y1y2=x1x2+£¨kx1-2£©£¨kx2-2£©
=£¨1+k2£©x1x2-2k¡Á£¨x1+x2£©+4
=£¨1+k2£©$\frac{12}{{1+4{k^2}}}$-2k¡Á$\frac{16k}{{1+4{k^2}}}$+4£¾0£¬
½âµÃ£ºk2£¼4£¬¡­¢Ú¡­£¨11·Ö£©
×ۺϢ٢ڿÉÖª£º$\frac{3}{4}$£¼k2£¼4£¬½âµÃ$\frac{{\sqrt{3}}}{2}$£¼k£¼2»ò-2£¼k£¼-$\frac{{\sqrt{3}}}{2}$£¬
Ö±ÏßlбÂʵÄȡֵ·¶Î§£¨-2£¬-$\frac{{\sqrt{3}}}{2}$£©¡È£¨$\frac{{\sqrt{3}}}{2}$£¬2£©£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬Τ´ï¶¨Àí£¬¿¼²é¼°ËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈôÕýËÄÀâ×¶µÄµ×Ãæ±ß³¤Îª$2\sqrt{2}$£¬²àÃæ»ýΪ$4\sqrt{22}$£¬ÔòËüµÄÌå»ýΪ$\frac{4\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÉèµãA£¬F1£¬F2·Ö±ðΪÍÖÔ²$\frac{x^2}{4}+\frac{y^2}{3}=1$µÄ×ó¶¥µãºÍ×ó£¬ÓÒ½¹µã£¬¹ýµãA×÷бÂÊΪkµÄÖ±Ïß½»ÍÖÔ²ÓÚÁíÒ»µãB£¬Á¬½ÓBF2²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãC£®
£¨1£©ÇóµãBµÄ×ø±ê£¨ÓÃk±íʾ£©£»
£¨2£©ÈôF1C¡ÍAB£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨-1£¬2£©£¬$\overrightarrow{b}$=£¨m£¬3£©£¬m¡ÊR£¬Èô$\overrightarrow{a}$¡Í£¨$\overrightarrow{a}+\overrightarrow{b}$£©£¬Ôòm=11£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=|x-1|-2|x+1|µÄ×î´óÖµa£¨a¡ÊR£©£®
£¨¢ñ£©ÇóaµÄÖµ£»
£¨¢ò£©Èô$\frac{1}{m}+\frac{1}{2n}=a$£¨m£¾0£¬n£¾0£©£¬ÊԱȽÏm+2nÓë2µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¡¶Ëï×ÓËã¾­¡·ÊÇÎÒ¹ú¹Å´úµÄÊýѧÃûÖø£¬ÊéÖÐÓÐÈçÏÂÎÊÌ⣺¡°½ñÓÐÎåµÈÖîºî£¬¹²·ÖéÙ×ÓÁùÊ®¿Å£¬È˱ð¼ÓÈý¿Å£®ÎÊ£ºÎåÈ˸÷µÃ¼¸ºÎ£¿¡±ÆäÒâ˼Ϊ¡°ÓÐ5¸öÈË·Ö60¸öéÙ×Ó£¬ËûÃǷֵõÄéÙ×ÓÊý³É¹«²îΪ3µÄµÈ²îÊýÁУ¬ÎÊ5È˸÷µÃ¶àÉÙéÙ×Ó£®¡±Õâ¸öÎÊÌâÖУ¬µÃµ½éÙ×Ó×îÉÙµÄÈËËùµÃµÄéÙ×Ó¸öÊýÊÇ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬A=$\frac{¦Ð}{3}$£¬BC=3£¬DÊÇBCµÄÒ»¸öÈýµÈ·Öµã£¬ÔòADµÄ×î´óÖµÊÇ1+$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬ËıßÐÎAA1BB1ÊÇÁâÐΣ¬¡ÏBB1A1=$\frac{¦Ð}{3}£¬{C_1}{B_1}¡ÍÃæA{A_1}B{B_1}$£¬¶þÃæ½ÇC-A1B1-BΪ$\frac{¦Ð}{6}$£¬CB=1£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæACB1¡ÍÆ½ÃæCBA1£»
£¨¢ò£©Çó¶þÃæ½ÇA-A1C-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¸´Êý$\frac{2}{i£¨3-i£©}$=£¨¡¡¡¡£©
A£®$\frac{1-3i}{5}$B£®$\frac{1+3i}{5}$C£®$\frac{3+i}{5}$D£®$\frac{3-i}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸