精英家教网 > 高中数学 > 题目详情
如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成角的余弦值是(  )
A、
15
5
B、
2
2
C、
10
5
D、0
考点:用空间向量求直线间的夹角、距离,异面直线及其所成的角
专题:空间位置关系与距离,空间向量及应用
分析:以DA,DC,DD1所在直线方向x,y,z轴,建立空间直角坐标系,可得
A1E
GF
的坐标,进而可得cos<
A1E
GF
>,可得答案.
解答: 解:以DA,DC,DD1所在直线方向x,y,z轴,建立空间直角坐标系,
则可得A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0)
A1E
=(-1,0,-1),
GF
=(1,-1,-1)
设异面直线A1E与GF所成角的为θ,
则cosθ=|cos<
A1E
GF
>|=0,
故选:D
点评:本题考查异面直线所成的角,建立空间直角坐标系是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角三角形ABC中,向量
m
=(2-2sinB,cosB-sinB),
n
=(1+sinB,cosB+sinB),且
m
n

(1)求角B的大小;
(2)当函数y=2sin2A+cos(
C-3A
2
)取最大值时,判断三角形ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=ex+1在点A(0,1)处的切线斜率为(  )
A、1
B、2
C、e
D、
1
e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边方程分别为AB:4x-3y+10=0,BC:y-2=0,CA:3x-4y-5=0.求:
(Ⅰ)AB边上的高所在直线的方程;
(Ⅱ)∠BAC的内角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x-1)6=a6x6+a5x5+…+a2x2+a1x+a0,则函数f(x)=a2x2+a1x+a0的增函数区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,使得|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
下面我们来考虑两个函数:f(x)=4-x+p•2-x+1,g(x)=
1-q•2x
1+q•2x

(Ⅰ)当p=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(Ⅱ)若q∈(
1
2
2
2
]
,函数g(x)在[0,1]上的上界是H(q),求H(q)的取值范围;
(Ⅲ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的各项都是正数,前n项和为Sn,且对任意n∈N+,都有a
 
3
1
+a
 
3
2
+a
 
3
3
+…+a
 
3
n
=S
 
2
n

(1)求证:a
 
2
n
=2Sn-an;     
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

为迎接2014年“马”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,但都只有一个选项是正确的,正确回答问题A可获奖金a元,正确回答问题B可获奖金b元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止.假设一个参与者在回答问题前,对这两个问题都很陌生.
(Ⅰ)如果参与者先回答问题A,求其恰好获得奖金a元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-|x-1|,x∈(-∞,2)
1
2
+(x-2),x∈[2,+∞)
,则函数F(x)=xf(x)-1的零点的个数为(  )
A、4B、5C、6D、7

查看答案和解析>>

同步练习册答案