精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{m}$=(-7,2+k),$\overrightarrow{n}$=(k+13,-6),且$\overrightarrow{m}$∥$\overrightarrow{n}$.则k的值等于(  )
A.1B.-2C.-16D.1或-16

分析 根据平行向量的坐标关系,由$\overrightarrow{m}$∥$\overrightarrow{n}$便可得到-7•(-6)-(k+13)(2+k)=0,这样解该方程便可得出k的值.

解答 解:∵$\overrightarrow{m}$∥$\overrightarrow{n}$,$\overrightarrow{m}=(-7,2+k),\overrightarrow{n}=(k+13,-6)$;
∴-7•(-6)-(k+13)(2+k)=0;
解得k=1或-16.
故选:D.

点评 考查向量坐标的概念,以及平行向量的坐标关系,一元二次方程的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,若此椭圆上存在不同的两点A、B关于直线y=4x+m对称,则实数m的取值范围是-$\frac{2\sqrt{13}}{13}$<m<$\frac{2\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.M是$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1上的动点,已知点F(1,0)、P(3,1),则2|MF|-|MP|的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若点A(1,2)与点B关于点P(0,-3)对称,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-x+1+alnx.
(1)当a=1时,求曲线y=(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)有两个极值点x1,x2,且x1<x2,求证:f(x2)<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:10lg2+log2015(π-3)0+($\frac{1}{2}$)-2+${C}_{6}^{3}$-cos(-$\frac{π}{3}$)+log59•log35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an},a1=1,an+1-2an=2n+1
(1)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求证:数列{bn}是等差数列;
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和的公式为Sn=32n-n2+1.
(1)求数列{an}的通项公式.
(2)数列{an}的前多少项和最大?最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,A=60°,a=$\sqrt{6}$,b=$\sqrt{3}$,满足条件的△ABC  (  )
A.无解B.仅一解C.有两解D.不能确定

查看答案和解析>>

同步练习册答案