精英家教网 > 高中数学 > 题目详情
3
-1
20
sinx
cosx
=
2
3
,则实数x的取值集合为
 
考点:几种特殊的矩阵变换
专题:计算题,矩阵和变换
分析:
3
-1
20
sinx
cosx
=
2
3
,可得
3
sinx-cosx=2,2sinx=
3
,即sinx=
3
2
,cosx=-
1
2
,从而可得实数x的取值集合.
解答: 解:∵
3
-1
20
sinx
cosx
=
2
3

3
sinx-cosx=2,2sinx=
3

∴sinx=
3
2
,cosx=-
1
2

∴x=
π
3
+2kπ,k∈Z,
故答案为:{x|x=
π
3
+2kπ,k∈Z}.
点评:本题考查矩阵的乘法,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的焦点坐标是(-2
3
,0)和(2
3
,0)并且经过点P(
5
6
),求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

将模为
2
的向量
OA1
绕点O逆时针旋转
π
4
且模变为原来的
2
2
得到向量
OA2
,讲向量
OA2
绕点O逆时针旋转
π
4
且模变为原来的
2
2
得到向量
OA3
,…,仿此无限进行下去,记△OA1A2的面积为a1,△OA2A3的面积为a2,…,△OAnAn+1的面积为an,…
(1)求所有这些三角形的面积和;
(2)对于数列{an},能否从中取出无限项组成一个新的等比数列{bn},使得数列{bn}的各项和为数列{an}的各项和的
4
15
?若存在,求出数列{bn}的通项公式;若不存在,写出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,
(1)画出二面角A-B1C-C1的平面角;
(2)求证:面BB1DD1⊥面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c满足条件;①y=f(x)的图象过点
1
1
,②当x=-1时,y=f(x)取得最小值是0.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-k2x在
-1
1
上是单调函数,求k的取值范围;
(3)是否存在自然数m,使得关于x的不等式f(x-m)≤x在区间[1,
4
上有解?若存在,求出自然数m的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC一边BC在平面α内,顶点A在平面α外,已知∠ABC=
π
3
,三角形所在平面与α所成的二面角为
π
6
,则直线AB与α所成角的正弦值为(  )
A、
3
2
B、
1
4
C、
1
2
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的体积为
6
2
,外接球球心为O,且满足
OA
+
OB
+
OC
=
0
,则正三棱锥P-ABC的外接球半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数sgn(x)=
1,x>0
0,x=0
-1,x<0
,求函数f(x)=sgn(lnx)-ln2x的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

4个人去借3本不同的书,全部借完,所有借法有
 
种.

查看答案和解析>>

同步练习册答案