精英家教网 > 高中数学 > 题目详情
13.如图所示,正方形ABCD内接于圆O,且AE=BE=CG=DG,AH=CF=$\frac{1}{4}$AD,则往圆O内投掷一点,该点落在四边形EFGH内的概率为$\frac{1}{π}$.

分析 求出圆的面积与四边形EFGH的面积,利用几何概型的概率公式即可求出对应的概率.

解答 解:设正方形的边长为4,则圆的半径为2$\sqrt{2}$,圆的面积为8π.
四边形EFGH的面积为16-2×$\frac{1}{2}×2×1$-2×$\frac{1}{2}×2×3$=8,
∴往圆O内投掷一点,该点落在四边形EFGH内的概率为$\frac{8}{8π}$=$\frac{1}{π}$.
故答案为:$\frac{1}{π}$.

点评 本题考查了几何概型的计算问题,求出对应的区域面积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|2x-$\frac{2}{m}$|+|2x+m|(m>0).
(Ⅰ)证明:f(x)≥2$\sqrt{2}$;
(Ⅱ)若当m=2时,关于实数x的不等式f(x)≥t2-$\frac{1}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆的长轴长与短轴长之和等于其焦距的$\sqrt{3}$倍,且一个焦点的坐标为($\sqrt{3}$,0),则椭圆的标准方程为(  )
A.$\frac{x^2}{4}$+y2=1B.$\frac{y^2}{4}$+x2=1C.$\frac{y^2}{8}$+$\frac{x^2}{5}$=1D.$\frac{x^2}{8}$+$\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
芯片甲81240328
芯片乙71840296
(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列及生产1件芯片甲和1件芯片乙所得总利润的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知等差数列{an}的前n项和为Sn,且S9=18,则下列说法正确的是(  )
A.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值-3B.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最小值3
C.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值-3D.${log_{\frac{1}{2}}}({2^{a_3}}+{2^{a_7}})$有最大值3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,三棱锥C-ADB中,CA=CD=AB=BD=2,AD=2$\sqrt{3}$,BC=1,则二面角C-AD-B的平面角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{1}{x}-2,x>a\\-{x^2}-4x,x≤a\end{array}$,若函数f(x)在定义域上有三个零点,则实数a的取值范围是(  )
A.(1,+∞)B.[0,+∞)C.[0,1]D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点A(-3,-4),B(5,-12).
(1)求$\overrightarrow{AB}$的坐标及$\left|\overrightarrow{AB}$|;
(2)$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,$\overrightarrow{OD}$=$\overrightarrow{OA}$-$\overrightarrow{OB}$,求$\overrightarrow{OC}$及$\overrightarrow{OD}$的坐标;
(3)求$\overrightarrow{OA}$,$\overrightarrow{OB}$所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{xn}中,xn+1=$\frac{3{x}_{n}}{{x}_{n}+3}$(n∈N+).
(1)设an=$\frac{1}{{x}_{n}}$,求证:数列{an}为等差数列;
(2)若x1=$\frac{1}{2}$,求xn

查看答案和解析>>

同步练习册答案