精英家教网 > 高中数学 > 题目详情
2.(1)若函数f(2x+1)=x2-2x,求f(3)的值.
(2)已知f($\frac{1-x}{1+x}$)=$\frac{1-{x}^{2}}{1+{x}^{2}}$,求f(x)的解析式.

分析 (1)利用代入法求f(3)的值.
(2)利用换元法,求f(x)的解析式.

解答 解:(1)令x=1,可得f(3)=1-2=-1;
(2)令t=$\frac{1-x}{1+x}$,则x=$\frac{1-t}{t+1}$(t≠-1),
∴f(t)=$\frac{1-(\frac{1-t}{t+1})^{2}}{1+(\frac{1-t}{t+1})^{2}}$=$\frac{2t}{{t}^{2}+1}$,
∴f(x)=$\frac{2x}{{x}^{2}+1}$(x≠-1).

点评 本题考查求f(x)的解析式,考查代入法、换元法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.经过点A(-2,-4)且与直线2x-y-10=0相切于点B(8,6)的圆的方程为x2+y2-11x+3y-30=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.《新课程标准》规定,那些希望在人文、社会科学等方面发展的学生,除了修完必修内容和选修系列一的全部内容外,基本要求是还要在系列三的6个专题中选修2个专题,高中阶段共获得16个学分.则一位同学的不同选课方案(  )种.
A.30B.25C.20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某学科的一次练习中,第一小组5个人成绩如下(单位:分):98、89、70、92、90,则这列数的样本方差为87.992.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义域在[m-3,m+9]上的奇函数f(x),其值域是[m,-m],则函数y=f(x+2015)的值域为(  )
A.[2012,2018]B.[2013,2019]C.[-3,3]D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知关于x的方程12x2-30x+k=0两实数根的立方和是这两实数根的平方和的三倍,则k的值为(  )
A.-25B.-15C.15D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知E(-2,4),F(4,1),G(8,9),△EFG的内切圆记为⊙M.
(1)试求出⊙M的方程;
(2)设过点P(0,3)作⊙M的两条切线,切点分别记为A,B;又过P作⊙N:x2+y2-4x+λy+4=0的两条切线,切点分别记为C,D.试确定λ的值,使AB⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)当a=2时,判断函数的奇偶性并求函数的最小值;
(2)试讨论f(x)的奇偶性;
(3)当x∈R时.求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将sinθ+$\sqrt{3}$cosθ=Acos(θ+φ)(其中A<0,φ∈[0,2π)),则A=-2φ=$\frac{5π}{6}$.

查看答案和解析>>

同步练习册答案