精英家教网 > 高中数学 > 题目详情

【题目】某几何体的三视图如下图,则该几何体的体积为( )

A. 18 B. 20 C. 24 D. 12

【答案】B

【解析】由三视图可得如下图所示几何体,它为长宽高为4,3,2的长方体沿对角线去掉一半且去掉一个三棱锥的几何体,其体积.

故本题正确答案为B.

点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}是公差为1的等差数列,a1 , a5 , a25成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= 3+an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若过点恰有两条直线与曲线相切,求的值;

)用表示中的最小值,设函数,若恰有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市某高级中学在今年4月份安装了一批空调,关于这批空调的使用年限(单位:年, )和所支出的维护费用(单位:万元)厂家提供的统计资料如下:

(1)请根据以上数据,用最小二乘法原理求出维护费用关于的线性回归方程

(2)若规定当维护费用超过13.1万元时,该批空调必须报废,试根据(1)的结论预测该批空调使用年限的最大值.

参考公式:最小二乘估计线性回归方程中系数计算公式:

,其中表示样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),).

(1)讨论的单调性;

(2)设 ,若)是的两个零点,且

试问曲线在点处的切线能否与轴平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=1,a3=﹣3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆经过点(2,0),(0,4),(0,2)求:
(1)圆的方程
(2)圆的圆心和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,在数列中,

(1)求证: 是等比数列;

(2)若,求数列的前项和

(3)求数列的前项和

查看答案和解析>>

同步练习册答案