精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且 ,在数列中,

(1)求证: 是等比数列;

(2)若,求数列的前项和

(3)求数列的前项和

【答案】(1)证明见解析;(2);(3.

【解析】试题分析:1利用递推关系可得由等比数列的定义即可得出结论;(2利用对数的运算性质可得,根据裂项求和方法即可得出;3 综上可得再利用错位相减法及分组求和法即可得结果.

试题解析:(1) 证明:

是首项为4,公比为2的等比数列 .

(2) 由(1)知

所以

.

(3) ,

,

综上 ,

,解得

.

【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:

;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如下图,则该几何体的体积为( )

A. 18 B. 20 C. 24 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论函数的单调性,并证明当时, ;

(Ⅱ)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1979年,李政道博士给中国科技大学少年班出过一道智趣题:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡觉,准备第二天再分,夜里1只猴子偷偷爬起来,先吃掉一个桃子,然后将其分成5等份,藏起自己的一份就去睡觉了;第2只猴子又爬起来,将剩余的桃子吃掉一个后,也将桃子分成5等份;藏起自己的一份睡觉去了;以后的3只猴子都先后照此办理,问:最初至少有多少个桃子?最后至少剩下多少个桃子?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)

已知如下等式:

时,试猜想的值,并用数学归纳法给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下2-组随机数:

907 966 191 925 271 932 812 458

569 683 431 257 393 027 556 488

730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为.现有件产品,其中件是一等品, 件是二等品.

(Ⅰ)随机选取件产品,设至少有一件通过检测为事件,求事件的概率;

(Ⅱ)随机选取件产品,其中一等品的件数记为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,曲线过点,且在点处的切线方程为.

1)求 的值;

2)证明:当时,

3)若当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)若函数处的切线与直线垂直,求的值;

(Ⅱ)讨论函数极值点的个数,并说明理由;

(Ⅲ)若 恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案