精英家教网 > 高中数学 > 题目详情
已知A,B为抛物线y2=2x上两动点,O为坐标原点且OA⊥OB,若直线AB的倾斜角为135°,则S△AOB=
2
5
2
5
分析:设出直线的方程与抛物线方程联立根据韦达定理表示出x1+x2和x1x2的表达式,然后利用配方法求得|x1-x2|,进而根据直线方程求得|y1-y2|,利用OA⊥OB垂直判断出二直线的斜率的乘积为-1求得m,代入三角形面积公式求得答案.
解答:解:设直线AB的方程为y=x-m,
联立
y2=2x
y=x-m
,得x2-(2m+2)x+m2=0,
则x1+x2=2m+2,x1x2=m2
∴|x1-x2|=
(2m+2)2-4m2
=
8m+4

∵三角形的面积为S△AOB=|
1
2
my1-
1
2
my2|=
1
2
m(|x1-x2|)=
1
2
m•
8m+4

又因为OA⊥OB,设A(x1
2x1
),B(x2,-
2x2
),
所以x1x2-2
x1x2
=0,即m2-2m=0,解得m=0(舍),或m=2,
代入上式可得S△AOB=
1
2
m•
8m+4
=
1
2
×2×
8×2+4
=2
5

故答案为:2
5
点评:本题主要考查了抛物线的应用.考查了学生分析问题和解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
b
为非零向量,函数f(x)=(x
a
+
b
)•(
a
-x
b
)
,则使f(x)的图象为关于y轴对称的抛物线的一个必要不充分条件是(  )
A、
a
b
B、
a
b
C、|
a|
=|
b
|
D、
a
=
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是抛物线y2=4x上的两点,O是抛物线的顶点,OA⊥OB.
(I)求证:直线AB过定点M(4,0);
(II)设弦AB的中点为P,求点P到直线x-y=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(文)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0>2,试用x0表示线段AB中点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是抛物线x2=2py(p>0)上的两个动点,O为坐标原点,非零向量
OA
 
OB
满足|
OA
+
OB
|=|
OA
-
OB
|

(Ⅰ)求证:直线AB经过一定点;
(Ⅱ)当AB的中点到直线y-2x=0的距离的最小值为
2
5
5
时,求p的值.

查看答案和解析>>

同步练习册答案