精英家教网 > 高中数学 > 题目详情
正三棱锥底面边长为a,侧棱与底面成角为60°,过底面一边作一截面使其与底面成30°的二面角,则此截面的面积为(  )
A.
3
4
a2
B.
3
3
a2
C.
1
3
a2
D.
3
8
a2

如图,E为AB中点,CE=
3
2
BC=
3
2
a,∠DEC=30°,∠DEC=60°,∴∠EDC=90°,∴DE=CE•sin60°=
3
2
a•
3
2
=
3
4
a,∴S△ADB=
1
2
•a•
3
4
a=
3
8
a2.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,若PA=AB,则PC与面PAB所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2
3

(1)求点A到平面MBC的距离;
(2)求平面ACM与平面BCD所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,P是AC与BD的交点,M是CC1的中点.
(1)求证:A1P⊥平面MBD;
(2)求直线B1M与平面MBD所成角的正弦值;
(3)求平面ABM与平面MBD所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正三棱柱ABC-A1B1C1的每条棱长均为a,M为棱A1C1上的动点.
(1)当M在何处时,BC1平面MB1A,并证明之;
(2)在(1)下,求平面MB1A与平面ABC所成的二面角的大小;
(3)求B-AB1M体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科做)(1)证明:面APC⊥面BEF;
(2)求平面PBC与平面PCD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥的底面积为Q,侧面积为P,侧面与底面所成的二面角为α,则cosα=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥AMN;
(2)在线段PD上是否存在一点E,使得MN面ACE?若存在,求出PE的长,若不存在,说明理由.
(3)求二面角A-PD-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD-A′B′C′D′中,侧棱与底面垂直,ABCD,AD⊥DC,且AB=AD=1,BC=
2
AA′=
6
2

(I)求证:DB⊥BC′;
(II)求二面角A′-BD-C的大小.

查看答案和解析>>

同步练习册答案