精英家教网 > 高中数学 > 题目详情
如图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为8
2
的矩形,则该几何体的表面积是(  )
A、20+8
2
B、24+8
2
C、8
D、16
考点:棱柱、棱锥、棱台的侧面积和表面积
专题:计算题,空间位置关系与距离
分析:由三视图及题设条件知,此几何体为一个三棱柱,底面是等腰直角三角形,且其高为
2
,故先求出底面积,求解其表面积即可.
解答: 解:此几何体是一个三棱柱,且其高为
8
2
2
2
=4,
由于其底面是一个等腰直角三角形,直角边长为2,所以其面积为
1
2
×2×2=2,
又此三棱柱的高为4,故其侧面积为(2+2+2
2
)×4=16+8
2

表面积为:2×2+16+8
2
=20+8
2

故选A.
点评:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

写出通项:
-
1
2
5
7
,-
4
5
11
13
,-
7
8
,…

查看答案和解析>>

科目:高中数学 来源: 题型:

求凼数y=
cosx
lg(1+tanx)
的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-2ax(a>0).
(1)求函数在[0,2]上的最大值g(a)表达式;
(2)若a=1.函数在区间[m,n]的值域也是[m,n](n>m),求m,n 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
1+sinx
cosx
=tan(
π
4
+
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2+2y=1的圆心为(  )
A、(0,1)
B、(0,-1)
C、(0,2)
D、(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象的第一部分如图所示,则(  )
A、f(x)的最小正周期为2π
B、f(x)的图象关于直线x=
π
3
对称
C、f(x)的图线关于点(
12
,0)对称
D、f(x)在[0,
π
2
]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知8个非零实数a1,a2,a3,…,a8,向量
OA1
=(a1a2)
OA2
=(a3,a4),
OA3
=(a5,a6),
OA4
=(a7,a8),对于下列命题:
①a1,a2,a3,…,a8为等差数列,则存在i,j(1≤i,j≤8,i≠j,i,j∈N*),使
4
k=1
OAk
与向量
n
=(aiaj)
共线;
②若a1,a2,a3,…,a8为公差不为0的等差数列,
n
=(aiaj)
(i≠j,i,j∈N*,1≤i,j≤8),
q
=(1,1),M={y|y=
n
q
}
,则集合M中元素有13个;
③若a1,a2,a3,…,a8为等比数列,则对任意i,j(1≤i,j≤4,i,j∈N*),都有
OAi
OAj

④若a1,a2,a3,…,a8为等比数列,则存在i,j(1≤i,j≤4,i,j∈N*),使
OAi
OAj
<0;
⑤若
m
=
OAi
OAj
(i≠j,1≤i,j≤4,i,j∈N*),则
m
的值中至少有一个不小于0.
上述命题正确的是
 
(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列不等式:
1+
1
3
5
2

(1+
1
3
)(1+
1
5
7
2

(1+
1
3
)(1+
1
5
)(1+
1
7
9
2


则第n-1一不等式为
 

查看答案和解析>>

同步练习册答案