【题目】对同学们而言,冬日的早晨离开暖融融的被窝,总是一个巨大的挑战,而咬牙起床的唯一动力,就是上学能够不迟到.己知学校要求每天早晨7:15之前到校,7:15之后到校记为迟到.小明每天6:15会被妈妈叫醒起味,吃早餐、洗漱等晨间活动需要半个小时,故每天6:45小明就可以出门去上学.从家到学校的路上,若小明选择步行到校,则路上所花费的时间相对准确,若以随机变量
(分钟)表示步行到校的时间,可以认为
.若小明选择骑共享单车上学,虽然骑行速度快于步行,不过由于车况、路况等不确定因素,路上所需时间的随机性增加,若以随机变量
(分钟)描述骑车到校的时间,可以认为
.若小明选择坐公交车上学,速度很快,但是由于等车时间、路况等不确定因素,路上所需时间的随机性进一步增加,若以随机变量
(分钟)描述坐公交车到校所需的时间,则可以认为
.
(1)若某天小明妈妈出差没在家,小明一觉醒来已经是6:40了,他抓紧时间洗漱更衣,没吃早饭就出发了,出门时候是6:50.请问,小明是否有某种出行方案,能够保证上学不迟到?小明此时的最优选择是什么?
(2)已知共享单车每20分钟收费一元,若小明本周五天都骑共享单车上学,以随机变量
表示这五天小明上学骑车的费用,求
的期望与方差(此小题结果均保留三位有效数字)
已知若随机变量
,则
%,
%,
%.
【答案】(1),三种方案都无法满足
原则,不能保证上学不迟到.相对而言,骑车到校不迟到的概率最高,是最优选择(2)
(元),
(元2)
【解析】
(1)依题意,小明需要在25分钟内到达学校.若他选择步行到校,则不迟到的概率记为
,求出
%.若骑车到校,则不迟到概率记为
,
(
%,
%),若坐公交车到校,则不迟到的概率记为
,
%.比较即可做出选择;(2)取随机变量
表示五天里骑车上学时间单程超过20分钟的天数.先求出
和
,再求
的期望与方差.
(1)依题意,小明需要在25分钟内到达学校.
若他选择步行到校,则不迟到的概率记为
,取
,
,
则
,
,
%.
若骑车到校,则不迟到的概率记为
,取
,
,
则
,
,
,
则
%,
%,
∴
(
%,
%)
若坐公交车到校,则不迟到的概率记为
,取
,
,
则
,
,
%.
综上,三种方案都无法满足
原则,不能保证上学不迟到.相对而言,骑车到校不迟到的概率最高,是最优选择.
(2)取随机变量
表示五天里骑车上学时间单程超过20分钟的天数.
依题意,每天骑车上学时间超过20分钟的概率为
%,
∴
,∴
%
,
%
.
又∵
,
∴
(元),
(元2)
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.
![]()
(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为
,
的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在
内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点,若
为线段
上的动点(不含
).
![]()
(1)平面
与平面
是否互相垂直?如果是,请证明;如果不是,请说明理由;
(2)求二面角
的余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间
(小时)的频率分布直方图如图所示:
![]()
(1)求样本学生一个月阅读时间
的中位数
.
(2)已知样本中阅读时间低于
的女生有30名,请根据题目信息完成下面的
列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.
列联表
男 | 女 | 总计 | |
| |||
| |||
总计 |
附表:
| 0.15 | 0.10 | 0.05 |
| 2.072 | 2.706 | 3.841 |
其中:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
(
).
(1)当
时,若函数
与
的图象在
处有相同的切线,求
的值;
(2)当
时,若对任意
和任意
,总存在不相等的正实数
,使得
,求
的最小值;
(3)当
时,设函数
与
的图象交于
两点.求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列{an}(an∈Z)的前n项和为Sn,记S1,S2,…,Sn中奇数的个数为bn.
(1)若an=n,请写出数列{bn}的前5项;
(2)求证:“a1为奇数,ai(i=2,3,4,…)为偶数”是“数列{bn}是单调递增数列”的充分不必要条件;
(3)若ai=bi,i=1,2,3,…,求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,直线l不经过坐标原点O且不平行与坐标轴,l与
相交于A,B两点,线段
的中点为M.
(1)证明:直线
的斜率与直线l的斜率的乘积为定值;
(2)若直线l过点
,延长线
与
交于点P,若四边形
是平行四边形,求直线l的斜率;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com