【题目】已知椭圆
,直线l不经过坐标原点O且不平行与坐标轴,l与
相交于A,B两点,线段
的中点为M.
(1)证明:直线
的斜率与直线l的斜率的乘积为定值;
(2)若直线l过点
,延长线
与
交于点P,若四边形
是平行四边形,求直线l的斜率;
科目:高中数学 来源: 题型:
【题目】对同学们而言,冬日的早晨离开暖融融的被窝,总是一个巨大的挑战,而咬牙起床的唯一动力,就是上学能够不迟到.己知学校要求每天早晨7:15之前到校,7:15之后到校记为迟到.小明每天6:15会被妈妈叫醒起味,吃早餐、洗漱等晨间活动需要半个小时,故每天6:45小明就可以出门去上学.从家到学校的路上,若小明选择步行到校,则路上所花费的时间相对准确,若以随机变量
(分钟)表示步行到校的时间,可以认为
.若小明选择骑共享单车上学,虽然骑行速度快于步行,不过由于车况、路况等不确定因素,路上所需时间的随机性增加,若以随机变量
(分钟)描述骑车到校的时间,可以认为
.若小明选择坐公交车上学,速度很快,但是由于等车时间、路况等不确定因素,路上所需时间的随机性进一步增加,若以随机变量
(分钟)描述坐公交车到校所需的时间,则可以认为
.
(1)若某天小明妈妈出差没在家,小明一觉醒来已经是6:40了,他抓紧时间洗漱更衣,没吃早饭就出发了,出门时候是6:50.请问,小明是否有某种出行方案,能够保证上学不迟到?小明此时的最优选择是什么?
(2)已知共享单车每20分钟收费一元,若小明本周五天都骑共享单车上学,以随机变量
表示这五天小明上学骑车的费用,求
的期望与方差(此小题结果均保留三位有效数字)
已知若随机变量
,则
%,
%,
%.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地拟规划种植一批芍药,为了美观,将种植区域(区域I)设计成半径为1km的扇形
,中心角
(
).为方便观赏,增加收入,在种植区域外围规划观赏区(区域II)和休闲区(区域III),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左、右顶点分别为A、B,双曲线
以A、B为顶点,焦距为
,点P是
上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为![]()
为坐标原点.
![]()
(1)求双曲线
的方程;
(2)求点M的纵坐标
的取值范围;
(3)是否存在定直线
使得直线BP与直线OM关于直线
对称?若存在,求直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将初始温度为
的物体放在室温恒定为
的实验室里,现等时间间隔测量物体温度,将第
次测量得到的物体温度记为
,已知
.已知物体温度的变化与实验室和物体温度差成正比(比例系数为
).给出以下几个模型,那么能够描述这些测量数据的一个合理模型为__________:(填写模型对应的序号)
①
;②
;③
.
在上述模型下,设物体温度从
升到
所需时间为
,从
上升到
所需时间为
,从
上升到
所需时间为
,那么
与
的大小关系是________(用“
”,“
”或“
”号填空)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】至
年底,我国发明专利申请量已经连续
年位居世界首位,下表是我国
年至
年发明专利申请量以及相关数据.
![]()
注:年份代码
~
分别表示
~
.
(1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?
(2)建立
关于
的回归直线方程(精确到
),并预测我国发明专利申请量突破
万件的年份.
参考公式:回归直线的斜率和截距的最小二乘法估计分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
.
(1)过点
的直线
与抛物线
相交于
两点,若
,求直线
的方程;
(2)点
是抛物线
上的两点,点
的纵坐标分别为1,2,分别过点
作倾斜角互补的两条直线交抛物线
于另外不同两点
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm至185cm之间;女性身高普遍在163cm至175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm至190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:“某一阅兵女子身高不低于169cm”,根据直方图得到P(C)的估计值为0.5.
![]()
(1)求直方图中a,b的值;
(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com