精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为.

(1)过点的直线与抛物线相交于两点,若,求直线的方程;

(2)是抛物线上的两点,点的纵坐标分别为12,分别过点作倾斜角互补的两条直线交抛物线于另外不同两点,求直线的斜率.

【答案】(1) (2)

【解析】

1)设直线的方程为,将直线与抛物线联立消去,根据韦达定理可得,再由抛物线定义可得即可求解.

2)求出点的坐标为,点的坐标为,分类讨论①当两条直线的倾斜角都为时,②当两条直线的倾斜角都不为时,设直线的方程与设直线的方程,分别将直线与抛物线联立,利用韦达定理,整理化简即可求出直线的斜率.

1)设直线的方程为,点的坐标分别为

联立方程,消去整理为,则

所以

由抛物线定义可得,所以

解得:

故直线的方程为,即.

2)由题意知,点的坐标为,点的坐标为

①当两条直线的倾斜角都为时,点的坐标为,点的坐标为

此时直线的斜率为

②当两条直线的倾斜角都不为时,设点的坐标为,点的坐标为

此时直线的斜率为

设直线的方程为

联立方程消去整理为,则,得

设直线的方程为

联立方程消去整理为

,得

所以,可得

故直线的斜率为

综上,可得直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知无穷数列{an}anZ)的前n项和为Sn,记S1S2Sn中奇数的个数为bn

(1)若an=n,请写出数列{bn}的前5项;

(2)求证:a1为奇数,aii=234)为偶数数列{bn}是单调递增数列的充分不必要条件;

(3)若ai=bii=123,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求处的切线方程;

2)若,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线l不经过坐标原点O且不平行与坐标轴,l相交于AB两点,线段的中点为M.

1)证明:直线的斜率与直线l的斜率的乘积为定值;

2)若直线l过点,延长线交于点P,若四边形是平行四边形,求直线l的斜率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,射线的方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为.一只小虫从点沿射线向上以单位/min的速度爬行

1)以小虫爬行时间为参数,写出射线的参数方程;

2)求小虫在曲线内部逗留的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果存在常数a,使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.

1)若数列:236mm6)是“兑换系数”为a的“兑换数列”,求ma的值;

2)已知有穷等差数列{bn}的项数是n0n0≥3),所有项之和是B,求证:数列{bn}是“兑换数列”,并用n0B表示它的“兑换系数”;

3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )

①公共图书馆业机构数与年份的正相关性较强

②公共图书馆业机构数平均每年增加13.743个

③可预测 2019 年公共图书馆业机构数约为3192个

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)设,当函数的图象有三个不同的交点时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】惠州市某商店销售某海鲜,经理统计了春节前后50天该海鲜的日需求量,单位:公斤),其频率分布直方图如下图所示.该海鲜每天进货1次,每销售1公斤可获利40元;若供大于求,剩余的海鲜削价处理,削价处理的海鲜每公斤亏损10元;若供不应求,可从其它商店调拨,调拨的海鲜销售1公斤可获利30.假设商店该海鲜每天的进货量为14公斤,商店销售该海鲜的日利润为.

1)求商店日利润关于日需求量的函数表达式.

2)根据频率分布直方图,

①估计这50天此商店该海鲜日需求量的平均数.

②假设用事件发生的频率估计概率,请估计日利润不少于620元的概率.

查看答案和解析>>

同步练习册答案