精英家教网 > 高中数学 > 题目详情
已知椭圆与双曲线共焦点,则椭圆的离心率的取值范围为(    )
A.B.C.D.
A
解:因为椭圆与双曲线共焦点,因此m+n=m+2-n,n=1,所以,这样可以解得为,选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右顶点为,过的焦点且垂直长轴的弦长为

(I)求椭圆的方程;
(II)设抛物线的焦点为F,过F点的直线交抛物线与A、B两点,过A、B两点分别作抛物线的切线交于Q点,且Q点在椭圆上,求面积的最值,并求出取得最值时的抛物线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设平面内两定点,直线相交于点,且它们的斜率之积为定值
(I)求动点的轨迹的方程;
(II)设,过点作抛物线的切线交曲线两点,求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的焦点为,以为边作正三角形,若双曲线恰好平分另外两边,则双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点分别是,直线与椭圆交于两点.当时,M恰为椭圆的上顶点,此时△的周长为6.

(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,问当
变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,
若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,
则△ABC的面积为       (    )

A.3              B.4             C.5              D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点,动点的轨迹曲线满足
,过点的直线交曲线两点.
(Ⅰ)求的值,并写出曲线的方程;
(Ⅱ)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直角三角形的三边(为斜边),则圆截直线所得的弦长等于
A.B.C.D.

查看答案和解析>>

同步练习册答案