精英家教网 > 高中数学 > 题目详情
13.设向量$\overrightarrow{a}$=(λ,2),$\overrightarrow{b}$=(-3,-2),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角,求实数入的取值范围.

分析 $\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角,可得$\overrightarrow{a}•\overrightarrow{b}$=-3λ-4<0,且不能反向共线.解出即可得出.

解答 解:∵$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角,
∴$\overrightarrow{a}•\overrightarrow{b}$=-3λ-4<0,且不能反向共线.
解得λ>$-\frac{4}{3}$,
由-2λ+6=0,解得λ=3.
∴实数入的取值范围是λ>$-\frac{4}{3}$,且λ≠3.

点评 本题考查了向量夹角公式、向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.曲线y=x3-2x在点(1,-1)处的切线倾斜角为(  )
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a、b、c是正数,若$\frac{b+c}{a}$,$\frac{c+a}{b}$,$\frac{a+b}{c}$成等差数列,判断$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$是不是也成等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinθ,cosθ是方程x2-($\sqrt{3}-1$)x+m=0的两根.
(1)求m的值;
(2)求$\frac{sinθ}{1-\frac{cosθ}{sinθ}}$+$\frac{cosθ}{1-tanθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{π})^{-x}-2,x>0}\\{\sqrt{2{x}^{2}},x≤0}\end{array}\right.$若f(x)>a恒成立,则实数a的取值范围为(  )
A.[-1,0]B.[-2,0]C.(-∞,-1]D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow{b}$=$\sqrt{3}$$\overrightarrow{c}$,则向量$\overrightarrow{a}$与向量$\overrightarrow{c}$的夹角为(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,已知$\overrightarrow{BA}•\overrightarrow{BC}$=2,三角形的面积为2$\sqrt{2}$,
(1)求角cosB;
(2)求边b的最小值;
(3)若sinC=$\frac{4\sqrt{2}}{9}$,求a和c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中的假命题是(  )
A.?x∈R,lg x=1B.?x∈R,tan x=1C.?x∈R,x3>0D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x3+ax+b=0,其中a,b均为实数.下列条件中不能使得该三次方程仅有一个实根的是(  )
A.a=-3,b=~3B.a=0,b=2C.a=-3,b=2D.a=1 b=2

查看答案和解析>>

同步练习册答案