分析 (1)令x2-2ax+4>0恒成立,列出不等式解出;
(2)令(0,+∞)为y=x2-2ax+4的值域的子集,列不等式解出;
(3)令y=x2-2ax+4的最小值等于2,列方程解出;
(4)令y=x2-2ax+4在(-∞,1]恒大于0且单调递减,列不等式组解出.
解答 解:(1)∵f(x)的定义域为R,∴x2-2ax+4>0恒成立,
∴△=4a2-16<0,解得-2<a<2.
(2)∵f(x)的值域为R,∴(0,+∞)为y=x2-2ax+4的值域的子集.
∴△=4a2-16≥0,解得a≤-2或a≥2.
(3)∵f(x)的值域为(-∞,-1],
∴log${\;}_{\frac{1}{2}}$(x2-2ax+4)≤-1.即x2-2ax+4≥2恒成立,
∴y=x2-2ax+4的最小值为2.即$\frac{16-4{a}^{2}}{4}$=2,解得a=$±\sqrt{2}$.
(4)∵f(x)在(-∞,1]上递增,
∴y=x2-2ax+4在(-∞,1]上递减,且y=x2-2ax+4在(-∞,1]上恒大于0.
∴$\left\{\begin{array}{l}{a≥1}\\{5-2a>0}\end{array}\right.$,解得1<a<$\frac{5}{2}$.
点评 本题考查了复合函数的单调性,二次函数的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com