精英家教网 > 高中数学 > 题目详情

如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上.如果∠P=50°,那么∠ACB等于( )

A.40° B.50° C.65° D.130°

 

C

【解析】

试题分析:先根据PA、PB是⊙O的切线,切点分别为A、B,∠P=50°,可求得∠AOB=130°,再利用圆周角定理,可求∠ACB的值.

【解析】
∵PA、PB是⊙O的切线,切点分别为A、B

∴∠PBO=∠PAO=90°

∵∠P=50°,

∴∠AOB=130°

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为2的等腰梯形,那么原平面图形的面积是(  )
A、4+2
2
B、8+4
2
C、4+8
2
D、1+
2

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 3.3平面与圆锥面的截线练习卷(解析版) 题型:填空题

在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α(α为锐角),l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行时,记β=0),则:当 时,平面π与圆锥面的交线为 .

 

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 2.4弦切角的性质练习卷(解析版) 题型:选择题

P在⊙O外,PC切⊙O于C,PAB交⊙O于A、B,则( )

A.∠PCB=∠B B.∠PAC=∠P C.∠PCA=∠B D.∠PAC=∠BCA

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 2.1圆周角定理练习卷(解析版) 题型:填空题

(2013•潮州二模)如图,已知OA=OB=OC,∠ACB=45°,则∠OBA的大小为 .

 

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年新人教A版选修4-1 2.1圆周角定理练习卷(解析版) 题型:选择题

如图,⊙O中弦AB,CD相交于点P,已知AP=3,BP=2,CP=1,则DP=( )

A.3 B.4 C.5 D.6

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修1-2 3.3综合法与分析法练习卷(解析版) 题型:选择题

下列表述:①综合法是执因导果法;②综合法是顺推法;③分析法是执果索因法;

④分析法是间接证法;⑤反证法是逆推法.正确的语句有( )

A.2个 B.3个 C.4个 D.5个

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修1-2 3.3综合法与分析法练习卷(解析版) 题型:选择题

证明不等式 (a≥2)所用的最适合的方法是( )

A.综合法 B.分析法 C.间接证法 D.合情推理法

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修1-2 3.2数学证明练习卷(解析版) 题型:选择题

(2014•天津二模)在实数集R中定义一种运算“⊕”,具有性质:

①对?a,b∈R,a⊕b=b⊕a;

②对?a∈R,a⊕0=a;

③对?a,b,c∈R,(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(b⊕c)﹣2c;

那么函数f(x)=x⊕(x≥1)的最小值为( )

A.5 B.4 C.2+2 D.2

 

查看答案和解析>>

同步练习册答案