分析 利用同角三角函数的基本关系,两角差的余弦公式,求得cosθ=cos[(θ-$\frac{π}{6}$)+$\frac{π}{6}$]的值.
解答 解:∵已知0≤θ≤$\frac{π}{2}$且sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,∴θ-$\frac{π}{6}$为锐角,∴cos(θ-$\frac{π}{6}$)=$\sqrt{{1-sin}^{2}(θ-\frac{π}{6})}$=$\frac{2\sqrt{2}}{3}$,
故cosθ=cos[(θ-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(θ-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(θ-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{2\sqrt{2}}{3}•\frac{\sqrt{3}}{2}$-$\frac{1}{3}•\frac{1}{2}$=$\frac{2\sqrt{6}-1}{6}$,
故答案为:$\frac{2\sqrt{6}-1}{6}$.
点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 70 | B. | 98 | C. | 108 | D. | 120 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 空气质量指数 | 7.1 | 8.3 | 7.3 | 9.5 | 8.6 | 7.7 | 8.7 | 8.8 | 8.7 | 9.1 |
| 天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 空气质量指数 | 7.4 | 8.5 | 9.7 | 8.4 | 9.6 | 7.6 | 9.4 | 8.9 | 8.3 | 9.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4,5} | B. | {3,4,5,6,7} | C. | {1,2,3,4,5,6,7} | D. | {3,4,5} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com