精英家教网 > 高中数学 > 题目详情
13.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是(  )
A.70B.98C.108D.120

分析 根据题意,由于A,B,C三门中至多选一门,则分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,②、从除A,B,C三门之外的7门中选出3门,分别求出每一种情况的选法数目,由加法原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
①、从A,B,C三门中选出1门,其余7门中选出2门,有C31C72=63种选法,
②、从除A,B,C三门之外的7门中选出3门,有C73=35种选法;
故不同的选法有63+35=98种;
故选:B.

点评 本题考查排列、组合的应用,注意“A,B,C三门中至多选一门”这一条件,据此进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在区间(1,+∞)上的单调性并说明理由;
(3)当x∈(n,a-2)时,函数f(x)的值域为(1,+∞),求实数n,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x2-cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],则满足f(x0)>f($\frac{π}{6}$)的x0的取值范围为[-$\frac{π}{2}$,-$\frac{π}{6}$)∪($\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设等差数列{an}的前n项和为Sn,若首项a1=-3,公差d=2,Sk=5,则正整数k=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,OA、OB是两条公路(近似看成两条直线),$∠AOB=\frac{π}{3}$,在∠AOB内有一纪念塔P(大小忽略不计),已知P到直线OA、OB的距离分别为PD、PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA、OB分别交于点M、N.
(1)求纪念塔P到两条公路交点O处的距离;
(2)若纪念塔P为小路MN的中点,求小路MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个口袋里装有5个不同的红球,7个不同的黑球,若取出一个红球记2分,取出一个黑球记1分,现从口袋中取出6个球,使总分低于8分的取法种数为112(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知0≤θ≤$\frac{π}{2}$且sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,则cosθ=$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|y=log3(x-2)},B={x|x2-2x-3<0},则A∩B=(  )
A.(-2,3)B.(2,3)C.(-∞,-1)∪(3,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-ax2+(2-a)x.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设g(x)=$\frac{x}{{e}^{x}}$-2,对任意给定的x0∈(0,e],方程f(x)=g(x0)在(0,e]有两个不同的实数根,求实数a的取值范围.(其中a∈R,e=2.71828…为自然对数的底数).

查看答案和解析>>

同步练习册答案