精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|y=log3(x-2)},B={x|x2-2x-3<0},则A∩B=(  )
A.(-2,3)B.(2,3)C.(-∞,-1)∪(3,+∞)D.(-∞,-2)∪(2,+∞)

分析 运用对数的真数大于0和二次不等式的解法,化简集合A,B,再由交集的定义,即可得到所求集合.

解答 解:集合A={x|y=log3(x-2)}={x|x-2>0}={x|x>2},
B={x|x2-2x-3<0}={x|-1<x<3},
则A∩B={x|2<x<3}=(2,3).
故选:B.

点评 本题考查集合的交集的运算,考查对数的真数大于0和二次不等式的解法,运用定义法是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}和等比数列{bn}满足a1+b1=7,a2+b2=4,a3+b3=5,a4+b4=2,则an+bn=7-n+(-1)n-1,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是(  )
A.70B.98C.108D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a,b,c为实数,且a>b,则下列不等式一定成立的是(  )
A.ac>bcB.a-b>b-cC.a+c>b+cD.a+c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线l1:x+2y-4=0,l2:2x+my-m=0(m∈R),且l1与l2平行,则m=4,l1与l2之间的距离为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知tanα=3,求$\frac{si{n}^{2}α+4sinα•cosα}{3si{n}^{2}α+2co{s}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知实数a,b满足a2+4b2=4.
(1)求证:a$\sqrt{1+{b}^{2}}$≤2;
(2)若对任意a,b∈R,.|x+1|-|x-3|≤ab恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为(  )
A.$\frac{1}{4π}$B.$1-\frac{1}{4π}$C.$\frac{1}{2π}$D.$1-\frac{1}{6π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m=-2”是“l1∥l2”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

同步练习册答案