精英家教网 > 高中数学 > 题目详情
10.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为(  )
A.$\frac{1}{4π}$B.$1-\frac{1}{4π}$C.$\frac{1}{2π}$D.$1-\frac{1}{6π}$

分析 本题是几何概型的意义,关键是要求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.

解答 解:∵S=82=64mm2,S=π($\frac{32}{2}$)2=256πmm2
∴该粒米落在铜钱的正方形小孔内的概率为P=$\frac{{S}_{{\;}_{正}}}{{S}_{圆}}$=$\frac{64}{256π}=\frac{1}{4π}$,
∴该粒米未落在铜钱的正方形小孔内的概率为1-$\frac{1}{4π}$;
故选B.

点评 本题考查了几何概型概率的求法;几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设等差数列{an}的前n项和为Sn,若首项a1=-3,公差d=2,Sk=5,则正整数k=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|y=log3(x-2)},B={x|x2-2x-3<0},则A∩B=(  )
A.(-2,3)B.(2,3)C.(-∞,-1)∪(3,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知:sin(α+$\frac{π}{4}$)+2sin(α-$\frac{π}{4}$)=0.
(1)求tanα的值;
(2)若tan($\frac{π}{4}$-β)=$\frac{1}{3}$,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x+a|+|x-2|,其中a为实常数.
(1)当a=1时,求使f(x)≤4成立的x的集合;
(2)若函数f(x)的最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在多面体ABCDEF中,四边形ABCD为等腰梯形,AB∥CD,AB=4,CD=2,AC与BD交于O,且AC⊥BD,矩形ACEF⊥底面ABCD,M为EF上一动点,满足$\overrightarrow{EM}$=λ$\overrightarrow{EF}$.
(Ⅰ)若AM∥平面EBD,求实数λ的值;
(Ⅱ)当λ=$\frac{1}{3}$时,锐二面角D-AM-B的余弦值为$\frac{\sqrt{7}}{14}$,求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-ax2+(2-a)x.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设g(x)=$\frac{x}{{e}^{x}}$-2,对任意给定的x0∈(0,e],方程f(x)=g(x0)在(0,e]有两个不同的实数根,求实数a的取值范围.(其中a∈R,e=2.71828…为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|x2-x-2≤0},集合B={x|m≤x<m+5,m∈R}.
(Ⅰ)若m=0,求A∩B.
(Ⅱ)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.随机变量X的分布列如下表,且E(X)=2,则D(2X-3)=(  )
X02a
P$\frac{1}{6}$p$\frac{1}{3}$
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案