精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=|x+a|+|x-2|,其中a为实常数.
(1)当a=1时,求使f(x)≤4成立的x的集合;
(2)若函数f(x)的最小值为3,求a的值.

分析 (1)代入a的值,通过讨论x的范围,求出不等式的解集即可;
(2)求出f(x)的最小值,得到|a+1|=3,解出a的值即可.

解答 解:(1)a=1时,f(x)=|x+1|+|x-2|,
f(x)≤4,即|x+1|+|x-2|≤4,
x≥2时,x+1+x-2≤4,解得:x≤$\frac{5}{2}$,
-1<x<2时,x+1+2-x≤4,成立,
x≤-1时,-x-1+2-x≤4,解得:x≥-$\frac{3}{2}$,
综上,不等式的解集是:{x|-$\frac{3}{2}$≤x≤$\frac{5}{2}$}.
(2)∵f(x)=|x-1|+|x+a|≥|(x-1)-(x+a)|=|a+1|,
当且仅当(x-1)(x+a)≤0时取等号,
∴f(x)min=|a+1|,
由|a+1|=3,解得:a=2或a=-4.

点评 本题考查了解绝对值不等式问题,考查转化思想以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,且an=2-2Sn,数列{bn}为等差数列,且b5=14,b7=20.
(1)求数列{an}的通项公式;
(2)若cn=an•bn,n∈N*,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线l1:x+2y-4=0,l2:2x+my-m=0(m∈R),且l1与l2平行,则m=4,l1与l2之间的距离为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知实数a,b满足a2+4b2=4.
(1)求证:a$\sqrt{1+{b}^{2}}$≤2;
(2)若对任意a,b∈R,.|x+1|-|x-3|≤ab恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,0<ϕ<$\frac{π}{2}$)的图象与x轴的交点中,相邻两个交点之间的距离为$\frac{π}{4}$,且图象上一个最低点为$M(\frac{π}{3},-1)$.
(Ⅰ)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,$\frac{π}{2}$]上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为(  )
A.$\frac{1}{4π}$B.$1-\frac{1}{4π}$C.$\frac{1}{2π}$D.$1-\frac{1}{6π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=a(x-1),g(x)=(ax-1)ex,a∈R.
(Ⅰ)判断直线y=f(x)能否与曲线y=g(x)相切,并说明理由;
(Ⅱ)若不等式f(x)>g(x)有且仅有两个整数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,3,4,5},B={3,4,5,6,7},则图中阴影部分表示的集合为(  )
A.{1,2,3,4,5}B.{3,4,5,6,7}C.{1,2,3,4,5,6,7}D.{3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,双曲线的离心率为$\sqrt{2}$,则λ=(  )
A.$\sqrt{2}$B.$2+\sqrt{3}$C.$2+\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案