精英家教网 > 高中数学 > 题目详情
14.已知集合A={1,2,3,4,5},B={3,4,5,6,7},则图中阴影部分表示的集合为(  )
A.{1,2,3,4,5}B.{3,4,5,6,7}C.{1,2,3,4,5,6,7}D.{3,4,5}

分析 根据Venn图,阴影部分对应的集合为A∩B,根据集合交集的定义进行计算即可.

解答 解:阴影部分对应的集合为A∩B,
∵A={1,2,3,4,5},B={3,4,5,6,7},
∴A∩B={3,4,5},
故选:D

点评 本题主要考查集合的基本运算,根据Venn图表示集合关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知0≤θ≤$\frac{π}{2}$且sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,则cosθ=$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x+a|+|x-2|,其中a为实常数.
(1)当a=1时,求使f(x)≤4成立的x的集合;
(2)若函数f(x)的最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-ax2+(2-a)x.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设g(x)=$\frac{x}{{e}^{x}}$-2,对任意给定的x0∈(0,e],方程f(x)=g(x0)在(0,e]有两个不同的实数根,求实数a的取值范围.(其中a∈R,e=2.71828…为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ax3-x2-x+b(a,b∈R),g(x)=$\frac{{3\sqrt{e}}}{4}{e^x}(e$是自然对数的底数),f(x)的图象在x=-$\frac{1}{2}$处的切线方程为y=$\frac{3}{4}x+\frac{9}{8}$.
(1)求a,b的值; 
(2)探究:直线y=$\frac{3}{4}x+\frac{9}{8}$.是否可以与函数g(x)的图象相切?若可以,写出切点坐标,否则,说明理由
(3)证明:当x∈(-∞,2]时,f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|x2-x-2≤0},集合B={x|m≤x<m+5,m∈R}.
(Ⅰ)若m=0,求A∩B.
(Ⅱ)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某沿海四个城市A,B,C,D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,AD=70$\sqrt{6}$nmile,D位于A的北偏东75°方向.现在有一艘轮船从A出发向直线航行,一段时间到达D后,轮船收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ度,则sinθ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若sin($\frac{π}{3}$-α)=$\frac{3}{5}$,则sin($\frac{π}{6}$-2α)=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为0°.

查看答案和解析>>

同步练习册答案