精英家教网 > 高中数学 > 题目详情
3.若sin($\frac{π}{3}$-α)=$\frac{3}{5}$,则sin($\frac{π}{6}$-2α)=$-\frac{7}{25}$.

分析 运用角的等价变化得到sin($\frac{π}{3}$-α)=$\frac{3}{5}$=sin($\frac{π}{2}-\frac{π}{6}$-α)=cos($\frac{π}{6}+α$),运用倍角公式求值.

解答 解:因为sin($\frac{π}{3}$-α)=$\frac{3}{5}$=sin($\frac{π}{2}-\frac{π}{6}$-α)=cos($\frac{π}{6}+α$),
则sin($\frac{π}{6}$-2α)=sin($\frac{π}{2}-\frac{π}{3}$-2α)=cos($\frac{π}{3}+2α$)=cos2($\frac{π}{6}+α$)=2cos2($\frac{π}{6}+α$)-1=-$\frac{7}{25}$;
故答案为:-$\frac{7}{25}$.

点评 本题考查了三角函数式的化简求值;灵活对角进行等价变化,运用倍角公式求值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知实数a,b满足a2+4b2=4.
(1)求证:a$\sqrt{1+{b}^{2}}$≤2;
(2)若对任意a,b∈R,.|x+1|-|x-3|≤ab恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={1,2,3,4,5},B={3,4,5,6,7},则图中阴影部分表示的集合为(  )
A.{1,2,3,4,5}B.{3,4,5,6,7}C.{1,2,3,4,5,6,7}D.{3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m=-2”是“l1∥l2”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点为F1、F2,在双曲线上存在点P满足3|$\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|≤2|\overrightarrow{{F_1}{F_2}}$|,则双曲线的渐近线的斜率$\frac{b}{a}$的取值范围是(  )
A.$0<\frac{b}{a}≤\frac{3}{2}$B.$\frac{b}{a}≥\frac{3}{2}$C.$0<\frac{b}{a}≤\frac{{\sqrt{5}}}{2}$D.$\frac{b}{a}≥\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{lg|x|}{x}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,双曲线的离心率为$\sqrt{2}$,则λ=(  )
A.$\sqrt{2}$B.$2+\sqrt{3}$C.$2+\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-4x≤0,x∈Z},B={y|y=m2,m∈A},则A∩B=(  )
A.{0,1,4}B.{0,1,6}C.{0,2,4}D.{0,4,16}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,半圆O的半径为1,A为直径延长线上一点,OA=2,B为半圆上任意一点,以AB为一边做等边三角形ABC,设∠AOB=θ.
(1)当$θ=\frac{π}{3}$时,求四边形OACB的面积;
(2)求线段OC长度的最大值,并指出此时θ的值.

查看答案和解析>>

同步练习册答案