精英家教网 > 高中数学 > 题目详情
18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点为F1、F2,在双曲线上存在点P满足3|$\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|≤2|\overrightarrow{{F_1}{F_2}}$|,则双曲线的渐近线的斜率$\frac{b}{a}$的取值范围是(  )
A.$0<\frac{b}{a}≤\frac{3}{2}$B.$\frac{b}{a}≥\frac{3}{2}$C.$0<\frac{b}{a}≤\frac{{\sqrt{5}}}{2}$D.$\frac{b}{a}≥\frac{{\sqrt{5}}}{2}$

分析 由OP为△F1PF2的中线,可得$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{OP}$,结合双曲线的范围,可得|$\overrightarrow{OP}$|≥a,|$\overrightarrow{{F}_{1}{F}_{2}}$|=2c,即有6a≤4c,结合双曲线的a,b,c的关系,可得a,b的不等关系,由渐近线的斜率,即可得到所求范围.

解答 解:由OP为△F1PF2的中线,可得:
$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{OP}$,
由3|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|≤2|$\overrightarrow{{F}_{1}{F}_{2}}$|,
可得6|$\overrightarrow{OP}$|≤2|$\overrightarrow{{F}_{1}{F}_{2}}$|,
由|$\overrightarrow{OP}$|≥a,|$\overrightarrow{{F}_{1}{F}_{2}}$|=2c,
可得6a≤4c,
即为9a2≤4c2
由c2=a2+b2
可得5a2≤4b2
可得$\frac{b}{a}$≥$\frac{\sqrt{5}}{2}$.
故选:D.

点评 本题考查双曲线的方程和性质,主要是渐近线的斜率和双曲线的范围,考查中点向量的表示以及向量的模的定义,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知cos($α-\frac{π}{3}$)-cosα=$\frac{1}{3}$,则cos($α+\frac{π}{3}$)的值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ax3-x2-x+b(a,b∈R),g(x)=$\frac{{3\sqrt{e}}}{4}{e^x}(e$是自然对数的底数),f(x)的图象在x=-$\frac{1}{2}$处的切线方程为y=$\frac{3}{4}x+\frac{9}{8}$.
(1)求a,b的值; 
(2)探究:直线y=$\frac{3}{4}x+\frac{9}{8}$.是否可以与函数g(x)的图象相切?若可以,写出切点坐标,否则,说明理由
(3)证明:当x∈(-∞,2]时,f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某沿海四个城市A,B,C,D的位置如图所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,AD=70$\sqrt{6}$nmile,D位于A的北偏东75°方向.现在有一艘轮船从A出发向直线航行,一段时间到达D后,轮船收到指令改向城市C直线航行,收到指令时城市C对于轮船的方位角是南偏西θ度,则sinθ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?”意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为(  )(注:3丈=5步,1里=300步)
A.4里55步B.3里125步C.7里125步D.6里55步

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若sin($\frac{π}{3}$-α)=$\frac{3}{5}$,则sin($\frac{π}{6}$-2α)=$-\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点为F(2,0),且离心率为$\frac{\sqrt{6}}{3}$
(1)求椭圆方程;
(2)过点M(3,0)作直线与椭圆交于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三棱锥O-ABC的顶点A,B,C都在半径为3的球面上,O是球心,∠AOB=150°,当△AOC与△BOC的面积之和最大时,三棱锥O-ABC的体积为(  )
A.$\frac{{9\sqrt{3}}}{4}$B.$\frac{{9\sqrt{3}}}{2}$C.$\frac{9}{2}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知随机变量ξ服从正态分布N(3,100),且P(ξ≤5)=0.84,则P(1≤ξ≤5)=0.68.

查看答案和解析>>

同步练习册答案