精英家教网 > 高中数学 > 题目详情
1.设等差数列{an}的前n项和为Sn,若首项a1=-3,公差d=2,Sk=5,则正整数k=5.

分析 利用等差数列的求和公式即可得出.

解答 解:由a1=-3,公差d=2,Sk=5,
∴-3k+$\frac{k(k-1)}{2}×2$=5,化为:k2-4k-5=0,
解得正整数k=5.
故答案为:5.

点评 本题考查了等差数列通项公式与求和公式、方程的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\sqrt{x+1}+\frac{1}{x-2}$的定义域为[-1,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}和等比数列{bn}满足a1+b1=7,a2+b2=4,a3+b3=5,a4+b4=2,则an+bn=7-n+(-1)n-1,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B,C的对边分别为a,b,c,若$b=3\sqrt{3},B=\frac{π}{3},sinA=\frac{1}{3}$,则边a的长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,且an=2-2Sn,数列{bn}为等差数列,且b5=14,b7=20.
(1)求数列{an}的通项公式;
(2)若cn=an•bn,n∈N*,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在锐角△ABC中,角A、B、C的对边分别为a、b、c,若a2=b2+bc,则$\frac{a}{b}$的取值范围是($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是(  )
A.70B.98C.108D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a,b,c为实数,且a>b,则下列不等式一定成立的是(  )
A.ac>bcB.a-b>b-cC.a+c>b+cD.a+c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为(  )
A.$\frac{1}{4π}$B.$1-\frac{1}{4π}$C.$\frac{1}{2π}$D.$1-\frac{1}{6π}$

查看答案和解析>>

同步练习册答案