【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知(b-c)2=a2-bc.
(1)求sinA;
(2)若a=2,且sinB,sinA,sinC成等差数列,求△ABC的面积.
【答案】(1);(2)
【解析】试题分析:(1)先由余弦定理求解,再通过同角三角函数基本关系式进行求解;(2)先由等差中项得到角角关系,再由正弦定理将角角关系转化为边边关系,再利用三角形的面积公式进行求解.
试题解析:(1)由(b-c)2=a2-bc,得b2+c2-a2=bc,
即=,由余弦定理得cosA=,因为0<A<π,所以sinA=.
(2)由sinB,sinA,sinC成等差数列,得sinB+sinC=2sinA,
由正弦定理得b+c=2a=4,所以16=(b+c)2,所以16=b2+c2+2bc.
由(1)得16=a2+bc,所以16=4+bc,解得bc=,
所以S△ABC=bcsinA=××=.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室,是边长为2的正方形.
(1)若,在上,四面体是否为鳖臑,若是,写出其每个面的直角:若不是,请说明理由;
(2)当阳马的体积最大时,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为方便金湖县人民游览三河风景区附近的“网红桥”,现准备在河岸一侧建造一个观景台A,已知射线PM, PN为两边夹角为120°的公路(长度均超过5千米),在两条公路PM,PN上分别设立游客上下点B、C,在观景台A和游客上下点B、C之间和游客上下点B、C之间分别建造三条观光线路AB,AC,BC,测得PB=3干米,PC=5千米.
(1)求线段BC的长度;
(2)若∠BAC= 60°,因政府要计算修建三条观光线路所需费用,所以要计算AB,AC,BC三条线路的总长度的取值范围,请你建立合适的数学模型,帮助政府解决这个问题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x-x2)ex-1.
(1)求函数f(x)的单调区间;
(2)若对任意x≥1,都有f(x)-mx-1+m≤0恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com