分析 由D点向AC,BC作垂线,垂足分别为E,F,可求EC=ED=CF=FD=1,由$\frac{DE}{BC}=\frac{AE}{AC}$即可解得x,y满足的相等关系式,由三角形面积公式及基本不等式可得S△ABC=$\frac{1}{2}$xy=$\frac{1}{2}(x+y)$≥$\sqrt{xy}$,即可解得△ABC面积的最小值.
解答
解:由题意,由D点向AC,BC作垂线 垂足分别为E,F,
∵∠ACD=45°,∠BCD=45°,
∴EC=ED=CF=FD=1,
∴由$\frac{DE}{BC}=\frac{AE}{AC}$得到$\frac{1}{y}=\frac{x-1}{x}$,整理可得:x+y=xy(x>1,y>1).
∴S△ABC=$\frac{1}{2}$xy=$\frac{1}{2}(x+y)$≥$\sqrt{xy}$,整理可得:xy≥4.
故解得△ABC面积的最小值是2.
故答案为:x+y=xy(x>1,y>1),2.
点评 本题主要考查了勾股定理,基本不等式的应用,综合性较强,属于基本知识的考查.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{3}$,0] | B. | [-$\frac{4π}{3}$,-$\frac{5π}{6}$] | C. | [$\frac{2π}{3}$,$\frac{7π}{6}$] | D. | [-$\frac{5π}{6}$,-$\frac{π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{3}$ | B. | 4 | C. | $\frac{16}{3}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分又非必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com