精英家教网 > 高中数学 > 题目详情
19.若数列{an}的前n项和为Sn,且Sn=2n+1,若bn=an2+n,则数列{bn}的前n项和Tn为Tn=$\left\{\begin{array}{l}{10.}&{n=1}\\{\frac{8}{3}+\frac{{4}^{n}}{3}+\frac{{n}^{2}+n-2}{2},}&{n≥2}\end{array}\right.$.

分析 根据当n≥2时,an=Sn-Sn-1的关系求出数列{an}和{bn}的通项公式,利用分组求和法进行求解即可.

解答 解:当n≥2时,an=Sn-Sn-1=2n+1-2n-1-1=2n-1
当n=1时,an=S1=2+1=3,不满足an=2n-1
则an=$\left\{\begin{array}{l}{3}&{n=1′}\\{{2}^{n-1},}&{n≥2}\end{array}\right.$,
∵bn=an2+n,
∴当n=1时,b1=a12+1=9+1=10,
当n≥2时,bn=an2+n=(2n-12+n=4n-1+n,
当n=1时,数列{bn}的前n项和T1=b1=4,
当n≥2时,数列{bn}的前n项和Tn=b1+(b2+b3+…+bn)=10+$\frac{4(1-{4}^{n-1})}{1-4}$+$\frac{(2+n)(n-1)}{2}$=10-$\frac{4}{3}$+$\frac{{4}^{n}}{3}$+$\frac{{n}^{2}+n-2}{2}$=$\frac{8}{3}$+$\frac{{4}^{n}}{3}$+$\frac{{n}^{2}+n-2}{2}$,
则Tn=$\left\{\begin{array}{l}{10.}&{n=1}\\{\frac{8}{3}+\frac{{4}^{n}}{3}+\frac{{n}^{2}+n-2}{2},}&{n≥2}\end{array}\right.$,
故答案为:Tn=$\left\{\begin{array}{l}{10.}&{n=1}\\{\frac{8}{3}+\frac{{4}^{n}}{3}+\frac{{n}^{2}+n-2}{2},}&{n≥2}\end{array}\right.$

点评 本题主要考查数列和的计算,根据n≥2时,an=Sn-Sn-1的关系求出数列{an}和{bn}的通项公式,利用分组求和法以及等比数列和等差数列的求和公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线的标准方程是y2=6x,
(1)求它的焦点坐标和准线方程,
(2)直线L过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为A、B,求AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知x>0,y>0,$\frac{1}{x}+\frac{2}{y+1}$=2,求2x+y的最小值.
(2)已知a>0,b>0,a+b=1,比较8-$\frac{1}{a}$与$\frac{1}{b}+\frac{1}{ab}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,a3=5,S5=3S3-2.
(1)求{an}的通项公式;
(2)设bn=2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在正四面体A-BCD中,若AB=6,则这个正四面体外接球的表面积为(  )
A.27πB.36πC.54πD.63π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果函数y=x2+(1-a)x+2在区间(-∞,3]上是减函数,那么实数a的取值范围是(  )
A.a≤7B.a≤-5C.a≥-5D.a≥7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,矩形OABC′是水平放置的一个平面图形的直观图,其中OA′=6,OC′=2,则原图形OABC的面积为(  )
A.24$\sqrt{2}$B.12$\sqrt{2}$C.48$\sqrt{2}$D.20$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在(x-$\frac{1}{{x}^{4}}$)10的展开式中,常数项为(  )
A.-90B.90C.-45D.45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的两焦点F1、F2与短轴两端点构成四边形为正方形,又点M是C上任意一点,且△MF1F2的周长为2$\sqrt{2}$+2.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆E上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O为坐标原点),当|AB|<$\frac{{2\sqrt{5}}}{3}$时,求实数t的取值范围.

查看答案和解析>>

同步练习册答案