精英家教网 > 高中数学 > 题目详情
9.已知抛物线的标准方程是y2=6x,
(1)求它的焦点坐标和准线方程,
(2)直线L过已知抛物线的焦点且倾斜角为45°,且与抛物线的交点为A、B,求AB的长度.

分析 (1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,即可求出抛物线的焦点坐标和准线方程,
(2)先根据题意给出直线l的方程,代入抛物线,求出两交点的横坐标的和,然后利用焦半径公式求解即可.

解答 解:(1)抛物线的标准方程是y2=6x,焦点在x轴上,开口向右,2p=6,∴$\frac{p}{2}$=$\frac{3}{2}$
∴焦点为F($\frac{3}{2}$,0),准线方程:x=-$\frac{3}{2}$,
(2)∵直线L过已知抛物线的焦点且倾斜角为45°,
∴直线L的方程为y=x-$\frac{3}{2}$,
代入抛物线y2=6x化简得x2-9x+$\frac{9}{4}$=0,
设A(x1,y1),B(x2,y2),则x1+x2=9,
所以|AB|=x1+x2+p=9+3=12.
故所求的弦长为12.

点评 本题考查了直线与抛物线的位置关系中的弦长问题,因为是过焦点的弦长问题,所以利用了焦半径公式.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,设定点A(a,a)(a>0),P是函数y=$\frac{1}{x}$(x>0)图象上一动点,若点P,A之间的最短距离为2$\sqrt{2}$,则满足条件的正实数a的值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB⊥BC,AD⊥DC,AC=2BC=2DC=2,3BM=BP.
(1)求证:CM∥平面PAD.
(2)若CM与平面PAC所成的角的正弦值为$\frac{\sqrt{5}}{5}$,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)过(4,0)点,且与双曲线x2-y2=2有相同的焦点.
(1)求椭圆E的标准方程;
(2)设点M(m,0)在椭圆E的长轴上,点P是椭圆上任意一点,当|$\overrightarrow{MP}}$|最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=-x3+ax2+bx+c的导数f'(x)满足f'(-1)=0,f'(2)=9.
(1)求f(x)的单调区间;
(2)f(x)在区间[-2,2]上的最大值为20,求c的值.
(3)若函数f(x)的图象与x轴有三个交点,求c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\vec a$=(2,-1,3),$\vec b$=(-4,2,x),$\vec c$=(1,-x,2),若($\vec a$+$\vec b$)⊥$\vec c$,则实数x的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(2x-$\sqrt{x}$)8的展开式中,二项式系数最大的项的值等于1120,则实数x的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=ex,若f(x)的图象的一条切线l经过点(-1,0),则切线l与x轴、y轴所围成的三角形的面积是(  )
A.$\frac{2}{e}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若数列{an}的前n项和为Sn,且Sn=2n+1,若bn=an2+n,则数列{bn}的前n项和Tn为Tn=$\left\{\begin{array}{l}{10.}&{n=1}\\{\frac{8}{3}+\frac{{4}^{n}}{3}+\frac{{n}^{2}+n-2}{2},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案