精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=ax3-$\frac{3}{2}$(a+2)x2+6x-3,a=-2时,
(1)求函数f(x)的单调区间;
(2)求函数f(x)在的极值.

分析 (1)当a=-2时,f(x)=-2x3+6x-3,f′(x)=-6x2+6=-6(x-1)(x+1),分别令f′(x)>0,令f′(x)<0,解得x范围即可得出单调区间.
(2)利用(1)的单调性,列出表格,可得极值.

解答 解:(1)当a=-2时,f(x)=-2x3+6x-3,
f′(x)=-6x2+6=-6(x-1)(x+1),
令f′(x)>0,解得-1<x<1;令f′(x)<0,解得x<-1或x>1.
∴函数f(x)的单调递增区间为[-1,1],函数f(x)的单调递减区间为(-∞,-1),(1,+∞).
(2)由(1)可知:

 x (-∞,-1)-1 (-1,1) 1 (1,+∞)
 f′(x)- 0+ 0-
 f(x) 单调递减 极小值 单调递增 极大值 单调递减
由表格可知:当x=-1时,函数f(x)取得极小值,f(-1)=2-6-3=-7;当x=1时,函数f(x)取得极大值,f(1)=-2+6-3=1.

点评 本题考查了利用导数研究函数的单调性极值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{-{e}^{x+1}(x≤0)}\\{x-2(x>0)}\end{array}\right.$,若f(a)=-1,则实数a的值为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=arctan(x2-2x)的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式log${\;}_{\frac{1}{3}}$$\frac{x+4}{2x-3}$>log${\;}_{\frac{1}{3}}$(8-x)的解集是{x|2<x<7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\sqrt{2}$,双曲线C的渐近线与抛物线y2=2px(p>0)交于A,B两点,△OAB(O为坐标原点)的面积为4,则抛物线的方程为(  )
A.y2=8xB.y2=4xC.y2=2xD.${y^2}=4\sqrt{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(-2ax+a+1)ex
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若0≤a≤1,求函数f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{2}a{x^2}$+2x+(2-a)lnx,
(1)当a=-2时,求f(x)的最大值;
(2)若函数f(x)在定义域内为单调函数,求实数a的取值范围;
(3)若曲线C:y=f(x)在点x=1处的切线l与C有且只有一个公共点,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线y=k(x+1)(k>0)与抛物线C:y2=4x相交于A,B两点,F为抛物线C的焦点,若|FA|=2|FB|,则k=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F是抛物线y2=8x的焦点,一条倾斜角为$\frac{π}{4}$的弦AB长为8$\sqrt{5}$(如图),求△FAB的面积和sin∠AFB的值.

查看答案和解析>>

同步练习册答案