精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\left\{\begin{array}{l}{-{e}^{x+1}(x≤0)}\\{x-2(x>0)}\end{array}\right.$,若f(a)=-1,则实数a的值为±1.

分析 利用分段函数以及方程求解a的值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{-{e}^{x+1}(x≤0)}\\{x-2(x>0)}\end{array}\right.$,f(a)=-1,
当a≤0时,-ea+1=-1,解得a=-1,
当a>0时,a-2=-1,解得a=1,
故答案为:±1.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点$(-5,-\frac{15}{4})$,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$sin(\frac{π}{2}+α)=-\frac{{2\sqrt{2}}}{3},α$是第二象限角,则$tan(a+\frac{π}{4})$=(  )
A.$\frac{{9-4\sqrt{2}}}{7}$B.$\frac{{2-\sqrt{2}}}{7}$C.$\frac{{9+4\sqrt{2}}}{7}$D.$\frac{{2+\sqrt{2}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,网格纸上小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的焦距为10,点P(2,1)在C的渐近线上,则C的方程为(  )
A.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$C.$\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}=1$D.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在△ABC中,sin2A=sinBsinC.
(1)若∠A=$\frac{π}{3}$,求∠B的大小;
(2)若bc=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an},{bn}满足:a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+1+2(n∈N*).
(Ⅰ)若{bn}是首项为1,公比为2等比数列,求数列{an}的通项公式;
(Ⅱ)在数列{an}中,a1=1,对任意p,q∈N*,ap+aq=ap+q,记数列{an+bn}的前n项和为Tn,求满足不等式Tn>$\frac{n^2}{2}$+100的自然数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某综艺节目在某一期节目中邀请6位明星,其中一个环节需要两位明星先后参与,已知在该轮游戏中甲、乙两位明星至多有一人参与,若甲明星参与,必须先进行游戏,则甲的可能有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3-$\frac{3}{2}$(a+2)x2+6x-3,a=-2时,
(1)求函数f(x)的单调区间;
(2)求函数f(x)在的极值.

查看答案和解析>>

同步练习册答案