7£®ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×㣺a1b1+a2b2+a3b3+¡­+anbn=£¨n-1£©•2n+1+2£¨n¡ÊN*£©£®
£¨¢ñ£©Èô{bn}ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ2µÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬¶ÔÈÎÒâp£¬q¡ÊN*£¬ap+aq=ap+q£¬¼ÇÊýÁÐ{an+bn}µÄǰnÏîºÍΪTn£¬ÇóÂú×ã²»µÈʽTn£¾$\frac{n^2}{2}$+100µÄ×ÔÈ»ÊýnµÄ×îСֵ£®

·ÖÎö £¨I£©ÀûÓõÝÍÆÊ½ÓëµÈ±ÈÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨II£©¶ÔÈÎÒâp£¬q¡ÊN*£¬ap+aq=ap+q£¬Ôòan+a1=an+1£¬¼´an+1-an=a1=1£¬ÀûÓõȲîÊýÁеÄͨÏʽ¿ÉµÃan£¬·Ö±ðÀûÓõȲîÊýÁÐÓëµÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©¡ßa1b1+a2b2+a3b3+¡­+anbn=£¨n-1£©•2n+1+2£¬
Ôòn¡Ý2ʱ£¬a1b1+a2b2+a3b3+¡­+an-1bn-1=£¨n-2£©•2n+2£¬
Á½Ê½Ïà¼õ£¬µÃanbn=n•2n£¨n¡Ý2£©£¬
µ±n=1ʱ£¬a1b1=2£¬Âú×ãÉÏʽ£¬
¡àanbn=n•2n£¨n¡ÊN*£©£¬
ÓÖ¡ß{bn }ÊÇÊ×ÏîΪ1£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬Ôòbn=2n-1£¬
¡àan=2n£®
£¨¢ò£©¡ß¶ÔÈÎÒâp£¬q¡ÊN*£¬ap+aq=ap+q£¬Ôòan+a1=an+1£¬¼´an+1-an=a1=1£¬
¡àÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îΪ1µÄµÈ²îÊýÁУ¬
¡àan=n£¬
ÓÉ£¨¢ñ£©µÃbn=2n£¬
Tn=£¨a1+a2+¡­+an£©+£¨b1+b2+¡­+bn£©=$\frac{n£¨n+1£©}{2}+\frac{{2£¨1-{2^n}£©}}{1-2}$=$\frac{n£¨n+1£©}{2}+{2^{n+1}}-2$£¬
²»µÈʽ${T_n}£¾\frac{n^2}{2}+100$£¬¼´${2^{n+1}}+\frac{n}{2}£¾102$£¬
¡àÂú×ãÌõ¼þµÄ×ÔÈ»ÊýnµÄ×îСֵΪ6£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆÊ½µÄÓ¦ÓᢵȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°Ç°nÏîºÍ¹«Ê½¡¢²»µÈʽÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¼¯ºÏA={1£¬2£¬3£¬4}£¬B={x|x=$\sqrt{n}$£¬n¡ÊA}£¬ÔòA¡ÉBµÄ×Ó¼¯¸öÊýÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÖ±Ïßl¹ýµãP£¨3£¬2£©£¬ÇÒÓëxÖá¡¢yÖáµÄÕý°ëÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£¬OÎª×ø±êÔ­µã£¬Ôò¡÷OABÃæ»ýµÄ×îСֵΪ12£¬´Ëʱ£¬Ö±ÏßlµÄ·½³ÌΪ2x+3y-12=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{e}^{x+1}£¨x¡Ü0£©}\\{x-2£¨x£¾0£©}\end{array}\right.$£¬Èôf£¨a£©=-1£¬ÔòʵÊýaµÄֵΪ¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®y=-3sin£¨2x-$\frac{¦Ð}{6}$£©µÄ³õÏàÊÇ$\frac{5¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª$\overrightarrow{a}$=£¨sinx£¬cosx£©£¬$\overrightarrow{b}$=£¨1£¬cosx£©£¬x¡ÊR£®º¯Êýf£¨x£©=$\overrightarrow{a}$•£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©£¬Çóf£¨x£©µÄ×î´óÖµºÍÖÜÆÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªF1¡¢F2·Ö±ðÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬¹ýµãF2ÓëË«ÇúÏßµÄÒ»Ìõ½¥½üÏ߯½ÐеÄÖ±Ïß½»²æË«ÇúÏßÁíÒ»Ìõ½¥½üÏßÓÚµãM£¬ÈôµãMÔÚÒÔÏß¶ÎF1F2Ϊֱ¾¶µÄÔ²ÄÚ£¬ÔòË«ÇúÏßÀëÐĵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\sqrt{3}$£¬+¡Þ£©B£®£¨2£¬+¡Þ£©C£®£¨$\sqrt{3}$£¬2£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Çóº¯Êýy=arctan£¨x2-2x£©µÄµÝ¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}a{x^2}$+2x+£¨2-a£©lnx£¬
£¨1£©µ±a=-2ʱ£¬Çóf£¨x£©µÄ×î´óÖµ£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÄÚΪµ¥µ÷º¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©ÈôÇúÏßC£ºy=f£¨x£©ÔÚµãx=1´¦µÄÇÐÏßlÓëCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóÕýÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸