精英家教网 > 高中数学 > 题目详情
19.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是(  )
A.($\sqrt{3}$,+∞)B.(2,+∞)C.($\sqrt{3}$,2)D.(1,2)

分析 确定M,F1,F2的坐标,进而由$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0,结合a、b、c的关系可得关于ac的不等式,利用离心率的定义可得范围.

解答 解:设直线方程为y=$\frac{b}{a}$(x-c),与双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)联立,
可得交点坐标为P($\frac{c}{2}$,-$\frac{bc}{2a}$)
∵F1(-c,0),F2(c,0),
∴$\overrightarrow{P{F}_{1}}$=(-$\frac{3C}{2}$,$\frac{bc}{2a}$),$\overrightarrow{P{F}_{2}}$=($\frac{c}{2}$,$\frac{bc}{2a}$),
由题意可得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$<0,即$\frac{{b}^{2}{c}^{2}}{4{a}^{2}}-\frac{3{c}^{2}}{4}$<0,
化简可得b2<3a2,即c2-a2<3a2
故可得c2<4a2,c<2a,可得e=$\frac{c}{a}$<2,
∵e>1,∴1<e<2
故选:D.

点评 本题考查双曲线的离心率,考查学生的计算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.执行如图的程序框图,若输入x=1,则输出的S=(  )
A.21B.37C.57D.62

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的焦距为10,点P(2,1)在C的渐近线上,则C的方程为(  )
A.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{5}=1$B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$C.$\frac{{x}^{2}}{80}-\frac{{y}^{2}}{20}=1$D.$\frac{{x}^{2}}{20}-\frac{{y}^{2}}{80}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an},{bn}满足:a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+1+2(n∈N*).
(Ⅰ)若{bn}是首项为1,公比为2等比数列,求数列{an}的通项公式;
(Ⅱ)在数列{an}中,a1=1,对任意p,q∈N*,ap+aq=ap+q,记数列{an+bn}的前n项和为Tn,求满足不等式Tn>$\frac{n^2}{2}$+100的自然数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sin(α+β)=1,则sin(2α+β)+sin(2α+3β)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某综艺节目在某一期节目中邀请6位明星,其中一个环节需要两位明星先后参与,已知在该轮游戏中甲、乙两位明星至多有一人参与,若甲明星参与,必须先进行游戏,则甲的可能有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,(x≤0)}\\{f(x-1)+1,(x>0)}\end{array}\right.$,若函数g(x)=f(x)-x-b有无穷多个零点,则实数b的取值范围为(  )
A.b∈(0,$\frac{1}{2}$]B.b∈[0,$\frac{1}{2}$)C.b∈(-∞,$\frac{1}{2}$]D.b∈(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx,-$\sqrt{3}$cosx),求函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$-1的周期和单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+3x2-4x ( 其中实数a<0 )
(1)若y=f(x)在(-∞,1]上为减函数,在[1,2]上为增函数,求a的值.
(2)设g(x)=f (x)-ax2,当a=-3时,判断函数y=g (x)在R上的单调性,并说明理由.
(3)若对任意x1,x2∈[-1,$\frac{1}{2}$]且x1<x2,都有不等式f(x2)-f(x1)<a (x22-x12) 成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案