精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)的定义域为[-2,2],且f(x)在区间[-2,2]上是减函数,且f(1-m)>f(m),求实数m的取值范围.

分析 利用函数的单调性,可得不等式,即可求出实数m的取值范围.

解答 解:因为f(x)的定义域为[-2,2]
所以-2≤1-m≤2且-2≤m≤2
所以-1≤m≤2
因为f(x)是减函数
所以1-m<m
所以m>0.5,
所以0.5<m≤2.

点评 本题考查实数m的取值范围,考查函数的单调性,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知{an},{bn}是满足(1+$\sqrt{2}$)n=an+bn$\sqrt{2}$的两个无穷数列,推测an ,bn表示(1-$\sqrt{2}$)n的表达式,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={y|y=x2+2x,x∈R},N={y|y=-x2-4x-3,x∈R}.则 M∩N=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知f($\frac{1}{x}$)=x+$\sqrt{{x}^{2}+1}$(x>0),求f(x).
(2)已知f(x)为一次函数,且f[f(x)]=9x+8,求f(x);
(3)已知f(x)满足关系式(x-1)f(x)+f($\frac{1}{x}$)=$\frac{1}{x-1}(x≠0,1)$,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C1:x2+y2-4x+2y-a2+5=0与圆C2:x2+y2-(2b-6)x-2by+2b2-10b+16=0交于不同的两点A(x1,y1),B(x2,y2),且$\frac{{x}_{1}-{x}_{2}}{{y}_{1}-{y}_{2}}$+$\frac{{y}_{1}+{y}_{2}}{{x}_{1}+{x}_{2}}$=0,则实数b的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知一个长、宽、高分别为5,4,3的长方体的所有顶点都在球O的球面上,则球O的表面积为(  )
A.50πB.100πC.200πD.$\frac{125\sqrt{2}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当0≤x≤1时,不等式sin$\frac{π}{2}$x-kx≥0成立,则实数k的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将2个男生和4个女生排成一排:
(1)男生排在中间的排法有多少种?
(2)男生不在头尾的排法有多少种?
(3)男生不相邻的排法有多少种?
(4)男生不相邻且不在头尾的排法有多少种?
(5)2个男生都不与女生甲相邻的排法有多少种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设向量$\overrightarrow{{a}_{i}}$=(cos2i°,1)$\overrightarrow{{b}_{i}}$=($\frac{1}{sin2i°}$,$\frac{1}{sin2i°}$),记号$\underset{\stackrel{n}{π}}{i=k}$ai表示akak+1ak+2…an,则$\underset{\stackrel{45}{π}}{i=1}$($\frac{1}{\overrightarrow{{a}_{i}}•\overrightarrow{{b}_{i}}}$+1)的值为223

查看答案和解析>>

同步练习册答案