精英家教网 > 高中数学 > 题目详情

(1)求函数的 定义域

(2)设,求的最大值与最小值。

解析:(1)

         得,或

         

     (2),而的递减区间

         当时,

         当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=1-
22x+t
(t是常实数).
(1)若函数的定义为R,求y=f(x)的值域;
(2)若存在实数t使得y=f(x)是奇函数,证明y=f(x)的图象在g(x)=2x+1-1图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

23、已知定义在实数集R上的函数f(x),其导函数为f'(x),满足两个条件:①对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
(1)求函数的f(x)的表达式;
(2)对任意x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤4|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
a•2x-a-12x-1
为奇函数.
(1)求函数的定义域;          
(2)确定实数a的值;
(3)判断函数f(x)在区间(0,+∞)上的单调性并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
14x-1
-a

(1)求函数的定义域;
(2)若f(x)为奇函数,求a的值;
(3)用单调性定义证明:函数f(x)在(0,+∞)上为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区一模)函数是这样定义的:对于任意整数m,当实数x满足不等式|x-m|<
1
2
时,有f(x)=m.
(1)求函数的定义域D,并画出它在x∈D∩[0,4]上的图象;
(2)若数列an=2+10•(
2
5
)n
,记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn
(3)若等比数列{bn}的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.

查看答案和解析>>

同步练习册答案