精英家教网 > 高中数学 > 题目详情
1.在约束条件$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤1}\end{array}\right.$下,目标函数z=x+$\frac{1}{2}$y的最大值为$\frac{5}{6}$..

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+$\frac{1}{2}$y得y=-2x+2z,
平移直线y=-2x+2z,
由图象可知当直线y=-2x+2z经过点B时,直线y=-2x+2z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{2}{3}}\\{y=\frac{1}{3}}\end{array}\right.$,即B($\frac{2}{3}$,$\frac{1}{3}$)
代入目标函数z=x+$\frac{1}{2}$y,
得z=$\frac{2}{3}$+$\frac{1}{3}$×$\frac{1}{2}$=$\frac{5}{6}$.
故答案为:$\frac{5}{6}$.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知某组数据采用了四种不同的回归方程进行回归分析,则回归效果最好的相关指数R2的值是(  )
A.0.97B.0.83C.0.32D.0.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列1,$\frac{1}{2}$,$\frac{2}{1},\frac{1}{3},\frac{2}{2},\frac{3}{1},\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1},…$中第50个数是(  )
A.$\frac{7}{4}$B.$\frac{4}{7}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=$\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$的最小值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率.
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,直三棱柱ABC-A1B1C1侧棱长为2,底面边AC、BC的长均为2,且AC⊥BC,若D为BB1的中点,E为AC的中点,M为AB的中点,N为BC的中点.
(1)求证:MN∥平面A1C1D;
(2)求证:平面A1C1D⊥平面BCC1B1
(3)求点E到平面A1C1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{x}^{2}-1$,若方程f(1+x2)-g(x)=k有三个根,求满足条件的实数k的取值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:
(1)|a+b|+|a-b|≥2|a|;
(2)|a+b|-|a-b|≤2|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(3,0),B(x0,y0)是圆C:(x-1)2+y2=4上异于点A的一个动点,O是坐标原点,点M是线段AB的中点.
(1)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求点B的坐标;
(2)求点M的轨迹方程;
(3)求|OM|的最小值.

查看答案和解析>>

同步练习册答案