精英家教网 > 高中数学 > 题目详情
已知函数fn(x)=anx3+bnx2+cnx,满足
an+1
an
=
bn+1
bn
=
cn+1
cn
=q(q>1,q为常数)
,n∈N*,给出下列说法:①函数fn(x)为奇函数;
②若函数f1(x)在R上单调递增,则a1>0;
③若x0是函数fn(x)的极值点,则x0也是函数fn+1(x)的极值点;
④若bn2>3ancn,则函数fn(x)在R上有极值.
以上说法正确的个数是(  )
A、4B、3C、2D、1
考点:数列的应用
专题:综合题,导数的综合应用
分析:①利用奇函数的定义,可以判断;
②根据函数f1(x)在R上单调递增,可得f1′(x)=3a1x2+2b1x+c1>0在R上恒成立,可得a1>0,△<0;
③利用极值的定义,结合
an+1
an
=
bn+1
bn
=
cn+1
cn
=q(q>1,q为常数)
,可得结论;
④fn′(x)=3anx2+2bnx+cnx=0,若bn2>3ancn,则方程有两个不等的实数根,且在其左右附近导数的符号改变.
解答: 解:①fn(x)+fn(-x)=anx3+bnx2+cnx=-anx3+bnx2-cnx=2bnx2≠0,
∴函数fn(x)不是奇函数;
②f1(x)=a1x3+b1x2+c1x
则∵函数f1(x)在R上单调递增,
∴f1′(x)=3a1x2+2b1x+c1>0在R上恒成立,
∴a1>0,△<0;
③若x0是函数fn(x)的极值点,
则fn′(x0)=3anx02+2bnx0+cnx0=0,
an+1
an
=
bn+1
bn
=
cn+1
cn
=q(q>1,q为常数)

∴fn+1′(x0)=q•(3anx02+2bnx0+cnx0)=0,
∴x0也是函数fn+1(x)的极值点;
④fn′(x)=3anx2+2bnx+cnx=0,若bn2>3ancn
则方程有两个不等的实数根,且在其左右附近导数的符号改变,
∴函数fn(x)在R上有极值.
综上可知,②③④正确.
故选B.
点评:本题考查导数知识的运用,考查数列知识,考查函数的极值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
.
OM
=(-2,3),
.
ON
=(-1,-5)
,则
1
2
.
MN
=(  )
A、(8,1)
B、(
1
2
,-4)
C、(-
1
2
,4)
D、(-1,-
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x3+
3x
+cosx,则导数y′=(  )
A、6x2+x-
2
3
-sin x
B、2x2+
1
3
x-
2
3
-sin x
C、6x2+
1
3
x-
2
3
+sin x
D、6x2+
1
3
x-
2
3
-sin x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的函数,导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  )
A、f(2)>e2f(0),f(2011)>e2011f(0)
B、f(2)<e2f(0),f(2011)>e2011f(0)
C、f(2)>e2f(0),f(2011)<e2011f(0)
D、f(2)<e2f(0),f(2011)<e2011f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=x2+3x在x=-1处的切线方程为(  )
A、x-y+1=0
B、x-y-1=0
C、2x+y+4=0
D、2x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和公式为Sn=n2-6n+3,则a7+a8+a9+a10等于(  )
A、7B、13C、33D、40

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x||3-2x|<5},B={x|2x2+7x-15≤0},C={x|2a<x<a+3}.
(1)若A∩C=C,求实数a的取值范围;  
(2)若C⊆(A∩B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,-1),
b
=(
1
2
3
2
),
(1)求证:
a
b

(2)若存在不同时为0的实数k和t,使
x
=
a
+(t-3)
b
y
=-k
a
+t
b
,且
x
y
,试求函数关系式k=f(t);
(3)求函数k=f(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.E为SD的中点,已知∠ABC=45°,AB=2,BC=2
2
SB=SC=
3

(Ⅰ) 求证:SA⊥BC;
(Ⅱ) 在BC上求一点F,使EC∥平面SAF;
(Ⅲ) 求三棱锥D-EAC的体积.

查看答案和解析>>

同步练习册答案